16 research outputs found

    High-resolution fully-coupled atmospheric–hydrological modeling: a cross-compartment regional water and energy cycle evaluation

    Get PDF
    The land surface and the atmospheric boundary layer are closely intertwined with respect to the exchange of water, trace gases and energy. Nonlinear feedback and scale dependent mechanisms are obvious by observations and theories. Modeling instead is often narrowed to single compartments of the terrestrial system or largely bound to traditional disciplines. Coupled terrestrial hydrometeorological modeling systems attempt to overcome these limitations to achieve a better integration of the processes relevant for regional climate studies and local area weather prediction. This study examines the ability of the hydrologically enhanced version of the Weather Research and Forecasting Model (WRF-Hydro) to reproduce the regional water cycle by means of a two-way coupled approach and assesses the impact of hydrological coupling with respect to a traditional regional atmospheric model setting. It includes the observation-based calibration of the hydrological model component (offline WRF-Hydro) and a comparison of the classic WRF and the fully coupled WRF-Hydro models both with identical calibrated parameter settings for the land surface model (Noah-MP). The simulations are evaluated based on extensive observations at the preAlpine Terrestrial Environmental Observatory (TERENO-preAlpine) for the Ammer (600 km2) and Rott (55 km2) river catchments in southern Germany, covering a five month period (Jun–Oct 2016). The sensitivity of 7 land surface parameters is tested using the Latin-Hypercube One-factor-At-a-Time (LH-OAT) method and 6 sensitive parameters are subsequently optimized for 6 different subcatchments, using the Model-Independent Parameter Estimation and Uncertainty Analysis software (PEST). The calibration of the offline WRF-Hydro gives Nash-Sutcliffe efficiencies between 0.56 and 0.64 and volumetric efficiencies between 0.46 and 0.81 for the six subcatchments. The comparison of classic WRF and fully coupled WRF-Hydro, both using the calibrated parameters from the offline model, shows nominal alterations for radiation and precipitation but considerable changes for moisture- and heat fluxes. By comparison with TERENO-preAlpine observations, the fully coupled model slightly outperforms the classic WRF with respect to evapotranspiration, sensible and ground heat flux, near surface mixing ratio, temperature, and boundary layer profiles of air temperature. The subcatchment-based water budgets show uniformly directed variations for evapotranspiration, infiltration excess and percolation whereas soil moisture and precipitation change randomly

    The ScaleX campaign: scale-crossing land-surface and boundary layer processes in the TERENO-preAlpine observatory

    Get PDF
    Augmenting long-term ecosystem-atmosphere observations with multidisciplinary intensive campaigns aims at closing gaps in spatial and temporal scales of observation for energy- and biogeochemical cycling, and at stimulating collaborative research. ScaleX is a collaborative measurement campaign, co-located with a long-term environmental observatory of the German TERENO (TERrestrial ENvironmental Observatories) network in mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land-surface atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated on a small number of locations

    Comparison of Two Bare Soil Reflectivity Models and Validation with L-Band Radiometer Measurements

    Get PDF
    Abstract — The emission of bare soils at microwave L-band (1 – 2 GHz) frequencies is known to be correlated with surface soil moisture. Roughness plays an important role in determining soil emissivity although it is not clear which roughness length scales are most relevant. Small-scale (i.e. smaller than the resolution limit) inhomogenities across the soil surface and with soil depth, caused by both, spatially varying soil properties and topographic features may affect soil emissivity. In this study, roughness effects were investigated by comparing measured brightness temperatures of well-characterized bare soil surfaces with the results from two reflectivity models. The selected models are the Air-to-Soil (A2S) transition model and Shi’s parameterization of the Integral Equation Model (IEM). The experimental data taken from the Surface Monitoring Of the Soil Reservoir Experiment (SMOSREX) consist of surface profiles, soil permittivities an
    corecore