643 research outputs found

    Critical self-organization of astrophysical shocks

    Full text link
    There are two distinct regimes of the first order Fermi acceleration at shocks. The first is a linear (test particle) regime in which most of the shock energy goes into thermal and bulk motion of the plasma. The second is an efficient regime when it goes into accelerated particles. Although the transition region between them is narrow, we identify the factors that drive the system to a {\it self-organized critical state} between those two. Using an analytic solution, we determine this critical state and calculate the spectra and maximum energy of accelerated particles.Comment: To appear in ApJL, Sec.3 extensively rewritten, 4 pages, Latex, emulateapj.sty, eps

    Cosmic ray acceleration parameters from multi-wavelength observations. The case of SN 1006

    Full text link
    The properties of the Galactic supernova remnant SN 1006 are theoretically reanalysed. Nonlinear kinetic theory is used to determine the acceleration efficiency of cosmic rays (CRs) in the supernova remnant SN 1006. The known range of astronomical parameters and the existing measurements of nonthermal emission are examined in order to define the values of the relevant physical parameters which determine the CR acceleration efficiency. It is shown that the parameter values -- proton injection rate, electron to proton ratio and downstream magnetic field strength -- are determined with the appropriate accuracy. In particular also the observed azimuthal variations in the gamma-ray morphology agree with the theoretical expectation. These parameter values, together with the reduction of the gamma-ray flux relative to a spherically symmetric acceleration geometry, allow a good fit to the existing data, including the recently detected TeV emission by H.E.S.S. SN 1006 represents the first example where a high efficiency of nuclear CR production, required for the Galactic CR sources, is consistently established.Comment: 10 pages, 6 figures, accepted for publication in A&

    Cosmic Ray Acceleration by Spiral Shocks in the Galactic Wind

    Full text link
    Cosmic ray acceleration by shocks related with Slipping Interaction Regions (SIRs) in the Galactic Wind is considered. SIRs are similar to Solar Wind Corotating Interaction Regions. The spiral structure of our Galaxy results in a strong nonuniformity of the Galactic Wind flow and in SIR formation at distances of 50 to 100 kpc. SIRs are not corotating with the gas and magnetic field because the angular velocity of the spiral pattern differs from that of the Galactic rotation. It is shown that the collective reacceleration of the cosmic ray particles with charge ZeZe in the resulting shock ensemble can explain the observable cosmic ray spectrum beyond the "knee" up to energies of the order of 1017Z10^{17}Z eV. For the reaccelerated particles the Galactic Wind termination shock acts as a reflecting boundary.Comment: LATEX, 14 pages, 7 figures, accepted to A&

    New results from H.E.S.S. observations of galaxy clusters

    Full text link
    Clusters of galaxies are believed to contain a significant population of cosmic rays. From the radio and probably hard X-ray bands it is known that clusters are the spatially most extended emitters of non-thermal radiation in the Universe. Due to their content of cosmic rays, galaxy clusters are also potential sources of VHE (>100 GeV) gamma rays. Recently, the massive, nearby cluster Abell 85 has been observed with the H.E.S.S. experiment in VHE gamma rays with a very deep exposure as part of an ongoing campaign. No significant gamma-ray signal has been found at the position of the cluster. The non-detection of this object with H.E.S.S. constrains the total energy of cosmic rays in this system. For a hard spectral index of the cosmic rays of -2.1 and if the cosmic-ray energy density follows the large scale gas density profile, the limit on the fraction of energy in these non-thermal particles with respect to the total thermal energy of the intra-cluster medium is 8% for this particular cluster. This value is at the lower bounds of model predictions.Comment: 4 pages, one figure, invited talk at the 2nd Heidelberg workshop: "High-Energy Gamma-rays and Neutrinos from Extra-Galactic Sources", January 13 - 16, 2009, to be published in Int. J. Mod. Phys.

    Expected gamma-ray emission of supernova remnant SN 1987A

    Full text link
    A nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants is employed to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5--100 yr. It is shown that an efficient production of nuclear CRs leads to a strong modification of the outer supernova remnant shock and to a large downstream magnetic field Bd≈20B_\mathrm{d}\approx 20 mG. The shock modification and the strong field are required to yield the steep radio emission spectrum observed, as well as to considerable synchrotron cooling of high energy electrons which diminishes their X-ray synchrotron flux. These features are also consistent with the existing X-ray observations. The expected \gr energy flux at TeV-energies at the current epoch is nearly ϵγFγ≈4×10−13\epsilon_{\gamma}F_{\gamma}\approx 4\times 10^{-13} erg cm2^2s−1^{-1} under reasonable assumptions about the overall magnetic field topology and the turbulent perturbations of this field. The general nonthermal strength of the source is expected to increase roughly by a factor of two over the next 15 to 20 yrs; thereafter it should decrease with time in a secular form.Comment: 7 pages, 5 figures, accepted for publication in ApJ, a number of changes have been made, even though these are not changing the main results of the pape
    • …
    corecore