608 research outputs found

    African small mammals = Petits mammifĂšres africains

    Get PDF

    RX J1643.7+3402: a new bright cataclysmic variable

    Get PDF
    We report the discovery of a new bright (V∌\sim12.6) cataclysmic variable star identified with the ROSAT X-ray source RX J1643.7+3402. Spectroscopic and photometric observations show it to be a novalike variable sharing some of the characteristics of the SW Sex sub-class of novalike CVs. The spectroscopic period may be either 2\fh575 or 2\fh885, within the period "gap." A photometric modulation with a probable period of 2\fh595 and an amplitude of ∌\sim 0.1 mag in V is present on most nights and could be either a "positive" or a "negative" superhump modulation (depending on the exact spectroscopic period), indicating the presence of a precessing accretion disk in this system. Rapid variations of 0.1 to 0.2 mag amplitude in V repeat with a time scale of ∌\sim 15 min

    The optical emission line spectrum of Mark 110

    Full text link
    We analyse in detail the rich emission line spectrum of Mark 110 to determine the physical conditions in the nucleus of this object, a peculiar NLS1 without any detectable Fe II emission associated with the broad line region and with a λ5007/HÎČ\lambda5007/H\beta line ratio unusually large for a NLS1. We use 24 spectra obtained with the Marcario Low Resolution Spectrograph attached at the prime focus of the 9.2 m Hobby-Eberly telescope at the McDonald observatory. We fitted the spectrum by identifying all the emission lines (about 220) detected in the wavelength range 4200-6900 \AA (at rest). The narrow emission lines are probably produced in a region with a density gradient in the range 103−106^{3}-10^{6} cm−3^{-3} with a rather high column density (5×1021\times10^{21} cm−2^{-2}). In addition to a narrow line system, three major broad line systems with different line velocity and width are required. We confirm the absence of broad Fe II emission lines. We speculate that Mark 110 is in fact a BLS1 with relatively "narrow" broad lines but with a BH mass large enough compared to its luminosity to have a lower than Eddington luminosity.Comment: 13 pages, 5 figures, accepted by A&

    The unusual emission line spectrum of IZw1

    Full text link
    Most Seyfert 1s show strong Fe II lines in their spectrum having the velocity and width of the broad emission lines. To remove the Fe II contribution in these objects, an accurate template is necessary. We used very high signal-to-noise, medium resolution archive optical spectra of I Zw 1 to build such a template. I Zw 1 is a bright narrow-line Seyfert 1 galaxy. As such it is well suited for a detailed analysis of its emission line spectrum. Furthermore it is known to have a very peculiar spectrum with, in addition to the usual broad and narrow line regions, two emission regions emitting broad and blue shifted [O III] lines making it a peculiarly interesting object. While analysing the spectra, we found that the narrow-line region is, unlike the NLR of most Seyfert 1 galaxies, a very low excitation region dominated by both permitted and forbidden Fe II lines. It is very similar to the emission spectrum of a blob in η\eta Carinae which is a low temperature (Te∌_{\rm e}\sim6 500 K), relatively high density (Ne_{\it e}=106^{6} cm−3^{-3}) cloud. The Fe II lines in this cloud are mainly due to pumping via the stellar continuum radiation field (Verner et al. \cite{verner02}). We did not succeed in modelling the spectrum of the broad-line region, and we suggest that a non radiative heating mechanism increases the temperature in the excited H I region, thus providing the necessary additional excitation of the Fe II lines. For the low-excitation narrow-line region, we are able to settle boundaries to the physical conditions accounting for the forbidden and permitted Fe II lines (106^{6}<<Ne_{\rm e}<107<10^{7} cm−3^{-3}; 10−6^{-6}<<U<10−5<10^{-5}).Comment: 16 pages, 7 figures, 10 tables, 1 ascii file, accepted in A&

    The Double Quasar Q2138-431: Lensing by a Dark Galaxy?

    Get PDF
    We report the discovery of a new gravitational lens candidate Q2138-431AB, comprising two quasar images at a redshift of 1.641 separated by 4.5 arcsecs. The spectra of the two images are very similar, and the redshifts agree to better than 115 km.sec−1^{-1}. The two images have magnitudes BJ=19.8B_J = 19.8 and BJ=21.0B_J = 21.0, and in spite of a deep search and image subtraction procedure, no lensing galaxy has been found with R<23.8R < 23.8. Modelling of the system configuration implies that the mass-to-light ratio of any lensing galaxy is likely to be around 1000M⊙/L⊙1000 M_{\odot}/L_{\odot}, with an absolute lower limit of 200M⊙/L⊙200 M_{\odot}/L_{\odot} for an Einstein-de Sitter universe. We conclude that the most likely explanation of the observations is gravitational lensing by a dark galaxy, although it is possible we are seeing a binary quasar.Comment: 17 pages (Latex), 8 postscript figures included, accepted by MNRA

    Molecular gas in QSO host galaxies

    Full text link
    We present the results of a survey for CO line emission from a sample of nearby QSO hosts taken from the Hamburg/ESO survey (HES) and the Veron-Cetty and Veron quasar catalogue. From a total of 39 observed sources we clearly detected 5 objects with >10sigma signals (HE 0108-4743, HE 0224-2834, J035818.7-612407, HE 1029-1831, HE 2211-3903). Further 6 sources show marginal detections on the 2sigma level.Comment: 4 pages, 1 figure, submitted to "QSO Hosts: Evolution and Environment", P.D. Barthel, D.B. Sanders, eds., August 2005, Leiden University (The Netherlands), New Astr. Re

    Optically bright Active Galactic Nuclei in the ROSAT-Faint Source Catalogue

    Full text link
    To build a large, optically bright, X-ray selected AGN sample we have correlated the ROSAT-FSC catalogue of X-ray sources with the USNO catalogue limited to objects brighter than O=16.5 and then with the APS database. Each of the 3,212 coincidences was classified using the slitless Hamburg spectra. 493 objects were found to be extended and 2,719 starlike. Using both the extended objects and the galaxies known from published catalogues we built up a sample of 185 galaxies with O_APS < 17.0 mag, which are high-probability counterparts of RASS-FSC X-ray sources. 130 galaxies have a redshift from the literature and for another 34 we obtained new spectra. The fraction of Seyfert galaxies in this sample is 20 %. To select a corresponding sample of 144 high-probability counterparts among the starlike sources we searched for very blue objects in an APS-based color-magnitude diagram. Forty-one were already known AGN and for another 91 objects we obtained new spectra, yielding 42 new AGN, increasing their number in the sample to 83. This confirms that surveys of bright QSOs are still significantly incomplete. On the other hand we find that, at a flux limit of 0.02 count /-1 and at this magnitude, only 40 % of all QSOs are detected by ROSAT.Comment: 17 pages, 16 figures, accepted by A&

    On the Gas Surrounding High Redshift Galaxy Clusters

    Get PDF
    Francis & Hewett (1993) identified two 10-Mpc scale regions of the high redshift universe that were seemingly very overdense in neutral hydrogen. Subsequent observations showed that at least one of these gas-rich regions enveloped a cluster of galaxies at redshift 2.38. We present improved observations of the three background QSOs with sightlines passing within a few Mpc of this cluster of galaxies. All three QSOs show strong neutral hydrogen absorption at the cluster redshift, suggesting that this cluster (and perhaps all high redshift clusters) may be surrounded by a ~5 Mpc scale region containing ~ 10^12 solar masses of neutral gas. If most high redshift clusters are surrounded by such regions, we show that the gas must be in the form of many small ( 0.03 cm^-3) clouds, each of mass < 10^6 solar masses. These clouds are themselves probably gathered into > 20 kpc sized clumps, which may be galaxy halos or protogalaxies. If this gas exists, it will be partially photoionised by the UV background. We predict the diffuse Ly-alpha flux from this photoionisation, and place observational limits on its intensity.Comment: 19 pages, 5 figures. Accepted for publication in PAS
    • 

    corecore