60 research outputs found

    Examining the Oscillator Waveform Animation Effect

    Get PDF
    An enhancing effect that can be applied to analogue oscillators in subtractive synthesizers is termed Animation, which is an efficient way to create a sound of many closely detuned oscillators playing in unison. This is often referred to as a supersaw oscillator. This paper first explains the operating principle of this effect using a combination of additive and frequency modulation synthesis. The Fourier series will be derived and results will be presented to demonstrate its accuracy. This will then provide new insights into how other more general waveform animation processors can be designed

    Five Variations on a Feedback Theme

    Get PDF
    This is a study on a set of feedback amplitude modulation oscillator equations. It is based on a very simple and inexpensive algorithm which is capable of generating a complex spectrum from a sinusoidal input. We examine the original and five variations on it, discussing the details of each synthesis method. These include the addition of extra delay terms, waveshaping of the feedback signal, further heterodyning and increasing the loop delay. In complement, we provide a software implementation of these algorithms as a practical example of their application and as demonstration of their potential for synthesis instrument design

    Five Variations on a Feedback Theme

    Get PDF
    This is a study on a set of feedback amplitude modulation oscillator equations. It is based on a very simple and inexpensive algorithm which is capable of generating a complex spectrum from a sinusoidal input. We examine the original and five variations on it, discussing the details of each synthesis method. These include the addition of extra delay terms, waveshaping of the feedback signal, further heterodyning and increasing the loop delay. In complement, we provide a software implementation of these algorithms as a practical example of their application and as demonstration of their potential for synthesis instrument design

    Virtual Analog Oscillator Hard Synchronisation: Fourier Series and an Efficient Implementation

    Get PDF
    This paper investigates a number of digital methods to produce the Analog subtractive synthesis effect of ‘Hard Synchronisation.’ While the original effect is produced by an explicit waveform phase reset, other approaches are given that produce an equivalent output. In particular, based on measurements taken from a real-analog synthesizer, a comb filtering model is proposed. This description ties in with earlier work but here an explicit structure is provided. This filter-based approach is then shown to be far more computationally efficient than the synchronisation by phase reset. This efficiency is at a minor cost as it is shown that it has a minimal impact on the sonic accuracy

    Virtual Analog Oscillator Hard Synchronisation: Fourier Series and an Efficient Implementation

    Get PDF
    This paper investigates a number of digital methods to produce the Analog subtractive synthesis effect of ‘Hard Synchronisation.’ While the original effect is produced by an explicit waveform phase reset, other approaches are given that produce an equivalent output. In particular, based on measurements taken from a real-analog synthesizer, a comb filtering model is proposed. This description ties in with earlier work but here an explicit structure is provided. This filter-based approach is then shown to be far more computationally efficient than the synchronisation by phase reset. This efficiency is at a minor cost as it is shown that it has a minimal impact on the sonic accuracy

    Conformal Titanium Nitride in a Porous Silicon Matrix: a Nanomaterial for In-Chip Supercapacitors

    Get PDF
    Today's supercapacitor energy storages are typically discrete devices aimed for printed boards and power applications. The development of autonomous sensor networks and wearable electronics and the miniaturisation of mobile devices would benefit substantially from solutions in which the energy storage is integrated with the active device. Nanostructures based on porous silicon (PS) provide a route towards integration due to the very high inherent surface area to volume ratio and compatibility with microelectronics fabrication processes. Unfortunately, pristine PS has limited wettability and poor chemical stability in electrolytes and the high resistance of the PS matrix severely limits the power efficiency. In this work, we demonstrate that excellent wettability and electro-chemical properties in aqueous and organic electrolytes can be obtained by coating the PS matrix with an ultra-thin layer of titanium nitride by atomic layer deposition. Our approach leads to very high specific capacitance (15 F/cm3^3), energy density (1.3 mWh/cm3^3), power density (up to 214 W/cm3^3) and excellent stability (more than 13,000 cycles). Furthermore, we show that the PS-TiN nanomaterial can be integrated inside a silicon chip monolithically by combining MEMS and nanofabrication techniques. This leads to realisation of in-chip supercapacitor, i.e., it opens a new way to exploit the otherwise inactive volume of a silicon chip to store energy

    Oksikodonin ja fentanyylin kÀyttö avohoidossa

    Get PDF
    Avohoidossa mÀÀrÀttyjen opioidien kokonaiskulutus Suomessa vÀhenee yhÀ. Oksikodonin kÀyttÀjien mÀÀrÀ ja ostokerrat sen sijaan lisÀÀntyivÀt vuonna 2018. Potilaille mÀÀrÀtyt oksikodoniannokset olivat osittain huolestuttavan suuria. TÀnÀ vuonna Kelan kohdennettu lÀÀkemÀÀrÀyspalaute koskee vahvojen opioidien kÀyttöÀ

    Assessment of a Cyclic Bending Test Method for Printed Flexible Supercapacitor

    Get PDF
    Printed flexible supercapacitor (SC) is seen as an attractive alternative to replace batteries as energy storage unit in energy autonomous sensors. This paper assesses a cyclic bending test method for printed flexible SC. The test is evaluated using four material stacks for printed SC in five different bending radii. The measurement system analysis (MSA) found that the calculated bending radii under all test conditions exhibit variation within a range of 0.3 mm, and the variation takes up less than 8% of bending radius. The measurement system is subjected to 9% total variation, which is within acceptable range. The variation was mainly caused by the uneven thickness distribution across the SC due to its structure. Thus, the variation caused by the test method and measurement is even smaller. In addition, the SC's bending radius subjected to even smaller variation in cyclic bending test. These indicate that this test method is highly reliable and repeatable for evaluating flexible SC.acceptedVersionPeer reviewe

    Combined epithelial marker analysis of tumour budding in stage II colorectal cancer

    Get PDF
    Tumour budding predicts survival of stage II colorectal cancer (CRC) and has been suggested to be associated with epithelial-to-mesenchymal transition (EMT). However, the underlying molecular changes of tumour budding remain poorly understood. Here, we performed multiplex immunohistochemistry (mIHC) to phenotypically profile tumours using known EMT-associated markers: E-cadherin (adherence junctions), integrin beta 4 (ITGB4; basement membrane), ZO-1 (tight junctions), and pan-cytokeratin. A subpopulation of patients showed high ITGB4 expression in tumour buds, and this coincided with a switch of ITGB4 localisation from the basal membrane of intact epithelium to the cytoplasm of budding cells. Digital image analysis demonstrated that tumour budding with high ITGB4 expression in tissue microarray (TMA) cores correlated with tumour budding assessed from haematoxylin and eosin (H&E) whole sections and independently predicted poor disease-specific survival in two independent stage II CRC cohorts (hazard ratio [HR] = 4.50 (95% confidence interval [CI] = 1.50-13.5), n = 232; HR = 3.52 (95% CI = 1.30-9.53), n = 72). Furthermore, digitally obtained ITGB4-high bud count in random TMA cores was better associated with survival outcome than visual tumour bud count in corresponding H&E-stained samples. In summary, the mIHC-based phenotypic profiling of human tumour tissue shows strong potential for the molecular characterisation of tumour biology and for the discovery of novel prognostic biomarkers.Peer reviewe

    Prognostic Role of Tumor Immune Microenvironment in Pleural Epithelioid Mesothelioma

    Get PDF
    BackgroundPleural mesothelioma (MPM) is an aggressive malignancy with an average patient survival of only 10 months. Interestingly, about 5%-10% of the patients survive remarkably longer. Prior studies have suggested that the tumor immune microenvironment (TIME) has potential prognostic value in MPM. We hypothesized that high-resolution single-cell spatial profiling of the TIME would make it possible to identify subpopulations of patients with long survival and identify immunophenotypes for the development of novel treatment strategies. MethodsWe used multiplexed fluorescence immunohistochemistry (mfIHC) and cell-based image analysis to define spatial TIME immunophenotypes in 69 patients with epithelioid MPM (20 patients surviving >= 36 months). Five mfIHC panels (altogether 21 antibodies) were used to classify tumor-associated stromal cells and different immune cell populations. Prognostic associations were evaluated using univariate and multivariable Cox regression, as well as combination risk models with area under receiver operating characteristic curve (AUROC) analyses. ResultsWe observed that type M2 pro-tumorigenic macrophages (CD163(+)pSTAT1(-)HLA-DRA1(-)) were independently associated with shorter survival, whereas granzyme B+ cells and CD11c(+) cells were independently associated with longer survival. CD11c(+) cells were the only immunophenotype increasing the AUROC (from 0.67 to 0.84) when added to clinical factors (age, gender, clinical stage, and grade). ConclusionHigh-resolution, deep profiling of TIME in MPM defined subgroups associated with both poor (M2 macrophages) and favorable (granzyme B/CD11c positivity) patient survival. CD11c positivity stood out as the most potential prognostic cell subtype adding prediction power to the clinical factors. These findings help to understand the critical determinants of TIME for risk and therapeutic stratification purposes in MPM.Peer reviewe
    • 

    corecore