33 research outputs found

    Crecimiento y características metabólicas diferenciadas de bovinos de razas con alto engrasamiento en un sistema de producción español

    Get PDF
    La producción de carne de vacuno con grasa altamente infiltrada tiene gran valor en el mercado mundial, debido a su excelente calidad y características organolépticas. Este tipo de carne puede obtenerse en su máxima calidad, de la raza wagyu (de origen japonés), de su cruce con la raza angus (wangus) o de la raza angus en pureza o en cruces con otras razas europeas (cruce comercial). La raza wagyu y sus cruces han sido poco estudiadas en sistemas de producción europeos y, por tanto, es difícil saber su comportamiento productivo y su eficiencia económica, comparada con razas europeas. El objetivo de este estudio fue comparar el crecimiento y las características metabólicas (diferenciadas en wagyu; Piao da C. et al., 2015) de animales wagyu (WY), wangus (WN) y cruces comerciales (CC) en las primeras etapas de su crecimiento

    Fases finales del crecimiento y características metabólicas en bovinos de raza Wagyu y cruzados con Angus (Wangus) en un sistema de producción español

    Get PDF
    La raza wagyu (WY) se caracteriza por dar lugar a una carne con un alto grado de infiltración, de alta calidad (Shahrai et al. 2020) y de alto interés en el mercado mundial. Carne más engrasada que la tradicional en bovino también se origina en animales de raza Angus, aunque ambas razas presentan ritmos de crecimientos y calidad de la carne diferenciadas (Radunz et al. 2009; Shahrai et al. 2020). El cruce de la raza Angus con Wagyu (wangus, WN) es, por lo tanto, de interés productivo. Sin embargo, hay pocos estudios sobre las características productivas de animales WY y WN en sistemas de producción españoles. Por tanto, el objetivo de este estudio fue evaluar el crecimiento y las características metabólicas de WY y WN en la fase final del engorde

    Beef Nutritional Characteristics, Fat Profile and Blood Metabolic Markers from Purebred Wagyu, Crossbred Wagyu and Crossbred European Steers Raised on a Fattening Farm in Spain

    Get PDF
    19 Pág.A high intramuscular fat content characterizes Wagyu (WY) cattle breed. Our objective was to compare beef from WY, WY-by-Angus, or Wangus (WN) steers with European, Angus-by-Charolais-Limousine crossbred steers (ACL), considering metabolic biomarkers pre-slaughtering and nutritional characteristics, including health-related indexes of the lipid fraction. The fattening system with olein-rich diets and no exercise restriction included 82 steers, 24 WY, 29 WN, and 29 ACL. The slaughter ages and weights were (median and interquartile range) 38.4 mo.-old (34.9-40.3 mo.) and 840 kg (785-895 kg) for WY; for WN, 30.6 mo. (26.9-36.5 mo.) and 832 kg (802-875 kg), and for ACL steers, 20.3 mo.-old (19.0-22.7 mo.) and 780 kg (715-852 kg). Blood lipid-related metabolites, except for non-esterified fatty acids (NEFA) and low-density level cholesterol (LDL), were higher in WY and WN than in ACL, while glucose was lower in WY and WN. Leptin was higher in WN than in ACL. Pre-slaughtering values of plasma HDL underscored as a possible metabolic biomarker directly related to beef quality. The amino-acid content in beef did not differ among experimental groups, except for more crude protein in ACL. Compared to ACL, WY steers showed higher intramuscular fat in sirloin (51.5 vs. 21.9%) and entrecote (59.6 vs. 27.6%), more unsaturated fatty acids in entrecote (55.8 vs. 53.0%), and more oleic acid in sirloin (46 vs. 41.3%) and entrecote (47.5 vs. 43.3%). Compared to ACL entrecote, WY and WN showed better atherogenic (0.6 and 0.55 vs. 0.69), thrombogenicity (0.82 and 0.92 vs. 1.1), and hypocholesterolemic/hypercholesterolemic index (1.9 and 2.1 vs. 1.7). Therefore, beef's nutritional characteristics depend on breed/crossbred, slaughtering age and cut, with WY and WN entrecote samples showing a healthier lipid fraction.This research was funded by the Centre for the Development of Industrial Technology from the Spanish Ministry of Science and Innovation, grant number CDTI-IDI-20180254.Peer reviewe

    MOET Efficiency in a Spanish Herd of Japanese Black Heifers and Analysis of Environmental and Metabolic Determinants

    Get PDF
    Multiple ovulation and embryo transfer (MOET) systems have been intensively implemented in Japanese Black cattle in Japan and to create Japanese Black herds out of these areas. Environmental conditions influence MOET efficiency. Thus, we describe results of 137 in vivo, non-surgical embryo flushings performed between 2016–2020, in a full-blood Japanese Black herd kept in Spain and the possible effects of heat, year, bull, donor genetic value, and metabolic condition. Additionally, 687 embryo transfers were studied for conception rate (CR) and recipient related factors. A total of 71.3% of viable embryos (724/1015) were obtained (5.3 ± 4.34/flushing). Donor metabolites did not affect embryo production (p > 0.1), although metabolite differences were observed over the years, and by flushing order, probably related to the donor age. CR was not affected by embryo type (fresh vs. frozen), recipient breed, and whether suckling or not suckling (p > 0.1). CR decreased significantly with heat (44.3 vs. 49.2%; (p = 0.042)) and numerically increased with recipient parity and ET-number. Pregnant recipients showed significantly higher levels of cholesterol-related metabolites, glucose, and urea (p < 0.05). Therefore, adequate MOET efficiency can be achieved under these conditions, and heat stress should be strongly avoided during Japanese Black embryo transfers. Moreover, recipients’ metabolites are important to achieve pregnancy, being probably related to better nutrient availability during pregnancy

    Noninvasive early detection of colorectal cancer by hypermethylation of the LINC00473 promoter in plasma cell-free DNA

    Get PDF
    Background Current noninvasive assays have limitations in the early detection of colorectal cancer. We evaluated the clinical utility of promoter methylation of the long noncoding RNA LINC00473 as a noninvasive biomarker to detect colorectal cancer and associated precancerous lesions. Methods We evaluated the epigenetic regulation of LINC00473 through promoter hypermethylation in colorectal cancer cell lines using bisulfite genomic sequencing and expression analyses. DNA methylation of LINC00473 was analyzed in primary colorectal tumors using 450K arrays and RNA-seq from The Cancer Genome Atlas (TCGA). Tissue-based findings were validated in several independent cohorts of colorectal cancer and advanced colorectal polyp patients by pyrosequencing. We explored the clinical utility of LINC00473 methylation for the early detection of colorectal cancer in plasma cell-free DNA by quantitative methylation-specific PCR and droplet digital PCR. Results LINC00473 showed transcriptionally silencing due to promoter hypermethylation in colorectal cancer cell lines and primary tumors. Methylation of the LINC00473 promoter accurately detected primary colorectal tumors in two independent clinical cohorts, with areas under the receiver operating characteristic curves (AUCs) of 0.94 and 0.89. This biomarker also identified advanced colorectal polyps from two other tissue-based clinical cohorts with high diagnostic accuracy (AUCs of 0.99 and 0.78). Finally, methylation analysis of the LINC00473 promoter in plasma cell-free DNA accurately identified patients with colorectal cancer and advanced colorectal polyps (AUCs of 0.88 and 0.84, respectively), which was confirmed in an independent cohort of patients. Conclusions Hypermethylation of the LINC00473 promoter is a new promising biomarker for noninvasive early detection of colorectal cancer and related precancerous lesions

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort

    Full text link
    Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis

    Characterizing carbapenemase-producing Escherichia coli isolates from Spain: high genetic heterogeneity and wide geographical spread

    Get PDF
    IntroductionCarbapenemase-Producing Escherichia coli (CP-Eco) isolates, though less prevalent than other CP-Enterobacterales, have the capacity to rapidly disseminate antibiotic resistance genes (ARGs) and cause serious difficult-to-treat infections. The aim of this study is phenotypically and genotypically characterizing CP-Eco isolates collected from Spain to better understand their resistance mechanisms and population structure.MethodsNinety representative isolates received from 2015 to 2020 from 25 provinces and 59 hospitals Spanish hospitals were included. Antibiotic susceptibility was determined according to EUCAST guidelines and whole-genome sequencing was performed. Antibiotic resistance and virulence-associated genes, phylogeny and population structure, and carbapenemase genes-carrying plasmids were analyzed.Results and discussionThe 90 CP-Eco isolates were highly polyclonal, where the most prevalent was ST131, detected in 14 (15.6%) of the isolates. The carbapenemase genes detected were blaOXA-48 (45.6%), blaVIM-1 (23.3%), blaNDM-1 (7.8%), blaKPC-3 (6.7%), and blaNDM-5 (6.7%). Forty (44.4%) were resistant to 6 or more antibiotic groups and the most active antibiotics were colistin (98.9%), plazomicin (92.2%) and cefiderocol (92.2%). Four of the seven cefiderocol-resistant isolates belonged to ST167 and six harbored blaNDM. Five of the plazomicin-resistant isolates harbored rmt. IncL plasmids were the most frequent (45.7%) and eight of these harbored blaVIM-1. blaOXA-48 was found in IncF plasmids in eight isolates. Metallo-β-lactamases were more frequent in isolates with resistance to six or more antibiotic groups, with their genes often present on the same plasmid/integron. ST131 isolates were associated with sat and pap virulence genes. This study highlights the genetic versatility of CP-Eco and its potential to disseminate ARGs and cause community and nosocomial infections

    Differential clinical characteristics and prognosis of intraventricular conduction defects in patients with chronic heart failure

    Get PDF
    Intraventricular conduction defects (IVCDs) can impair prognosis of heart failure (HF), but their specific impact is not well established. This study aimed to analyse the clinical profile and outcomes of HF patients with LBBB, right bundle branch block (RBBB), left anterior fascicular block (LAFB), and no IVCDs. Clinical variables and outcomes after a median follow-up of 21 months were analysed in 1762 patients with chronic HF and LBBB (n = 532), RBBB (n = 134), LAFB (n = 154), and no IVCDs (n = 942). LBBB was associated with more marked LV dilation, depressed LVEF, and mitral valve regurgitation. Patients with RBBB presented overt signs of congestive HF and depressed right ventricular motion. The LAFB group presented intermediate clinical characteristics, and patients with no IVCDs were more often women with less enlarged left ventricles and less depressed LVEF. Death occurred in 332 patients (interannual mortality = 10.8%): cardiovascular in 257, extravascular in 61, and of unknown origin in 14 patients. Cardiac death occurred in 230 (pump failure in 171 and sudden death in 59). An adjusted Cox model showed higher risk of cardiac death and pump failure death in the LBBB and RBBB than in the LAFB and the no IVCD groups. LBBB and RBBB are associated with different clinical profiles and both are independent predictors of increased risk of cardiac death in patients with HF. A more favourable prognosis was observed in patients with LAFB and in those free of IVCDs. Further research in HF patients with RBBB is warranted

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection
    corecore