12 research outputs found

    Heuristic method based on voting for extrinsic orientation through image epipolarization

    Get PDF
    [EN] Traditionally, the stereo-pair rectification, also known as epipolarization problem, (i.e., the projection of both images onto a common image plane) is solved once both intrinsic (interior) and extrinsic (exterior) orientation parameters are known. A heuristic method is proposed to solve both the extrinsic orientation problem and the epipolarization problem in just one single step. The algorithm uses the main property of a coplanar stereopair as fitness criteria: null vertical parallax between corresponding points to achieve the best stereopair. Using an iterative approach, each pair of corresponding points will vote for a rotation axis that may reduce vertical parallax. The votes will be weighted, the rotation applied, and an iteration will be carried out, until the vertical parallax residual error is below a threshold. The algorithm performance and accuracy are checked using both simulated and real case examples. In addition, its results are compared with those obtained using a traditional nonlinear least-squares adjustment based on the coplanarity condition. The heuristic methodology is robust, fast, and yields optimal results.The authors gratefully acknowledge the support from the Spanish Ministerio de Economia y Competitividad to the Project No. HAR2014-59873-R.Martín, S.; Lerma García, JL.; Uzkeda, H. (2017). Heuristic method based on voting for extrinsic orientation through image epipolarization. Journal of Electronic Imaging. 26(6):063020-1-063020-11. https://doi.org/10.1117/1.JEI.26.6.063020S063020-1063020-1126
    corecore