20 research outputs found
Obestatin/gpr39: an autocrine-paracrine system involved in differentiation, glucose metabolism and regeneration
White adipose tissue and skeletal muscle are the largest organs in the body
and both are composed of distinct cell types with a common origin, the
mesenchymal steam cells. The adipose tissue is composed by the adipocyte
while myocyte are the defining cell of skeletal muscle. Both adipocyte and
myocyte secrete a range of bioactive molecules that are involved in local
autocrine/paracrine interactions as well as in an endocrine cross-talk with other
tissues. Based on it, the main aim of the present work was to explore and to
validate the role of the obestatin/GPR39 system in the differentiation program
that determines adipogenesis and myogenesis. This aim was divided in the
following points:
1. To determine the role of the obestatina/GPR39 system, as
autocrine/paracrine signal, in the adipogenic program and on adipocyte
metabolism.
3. To establish the role of the obestatin/GPR39 system as autocrine/paracrine
signal in the myogenesis and on muscle metabolism.
5. To validate the use of obestatin as a potential therapeutic peptide for skeletal
muscle regeneration.
6. To determine the action of obestatin in the activation and differentiation of
satellite stem cells from skeletal muscle
Obestatin as a regulator of adipocyte metabolism and adipogenesis
The role of obestatin, a 23-amino-acid peptide encoded by the ghrelin gene, on the control of the metabolism of pre-adipocyte and adipocytes as well as on adipogenesis was determined. For in vitro assays, pre-adipocyte and adipocyte 3T3-L1 cells were used to assess the obestatin effect on cell metabolism and adipogenesis based on the regulation of the key enzymatic nodes, Akt and AMPK and their downstream targets. For in vivo assays, white adipose tissue (WAT) was obtained from male rats under continuous subcutaneous infusion of obestatin. Obestatin activated Akt and its downstream targets, GSK3alpha/beta, mTOR and S6K1, in 3T3-L1 adipocyte cells. Simultaneously, obestatin inactivated AMPK in this cell model. In keeping with this, ACC phosphorylation was also decreased. This fact was confirmed in vivo in white adipose tissue (omental, subcutaneous and gonadal) obtained from male rats under continuous sc infusion of obestatin (24 and 72 hrs). The relevance of obestatin as regulator of adipocyte metabolism was supported by AS160 phosphorylation, GLUT4 translocation and augment of glucose uptake in 3T3-L1 adipocyte cells. In contrast, obestatin failed to modify translocation of fatty acid transporters, FATP1, FATP4 and FAT/CD36, to plasma membrane. Obestatin treatment in combination with IBMX and DEX showed to regulate the expression of C/EBPalpha, C/EBPbeta, C/EBPdelta and PPARgamma promoting adipogenesis. Remarkable, preproghrelin expression, and thus obestatin expression, increased during adipogenesis being sustained throughout terminal differentiation. Neutralization of endogenous obestatin secreted by 3T3-L1 cells by anti-obestatin antibody decreased adipocyte differentiation. Furthermore, knockdown experiments by preproghrelin siRNA supported that obestatin contributes to adipogenesis. In summary, obestatin promotes adipogenesis in an autocrine/paracrine manner, being a regulator of adipocyte metabolism. These data point to a putative role in the pathogenesis of metabolic syndrome
Preproghrelin expression is a key target for insulin action on adipogenesis.
This study aimed to investigate the role of preproghrelin-derived peptides in adipogenesis. Immunocytochemical analysis of 3T3-L1 adipocyte cells showed stronger preproghrelin expression compared with that observed in 3T3-L1 preadipocyte cells. Insulin promoted this expression throughout adipogenesis identifying mTORC1 as a critical downstream substrate for this profile. The role of preproghrelin-derived peptides on the differentiation process was supported by preproghrelin knockdown experiments, which revealed its contribution to adipogenesis. Neutralization of endogenous O-acyl ghrelin (acylated ghrelin), unacylated ghrelin, and obestatin by specific antibodies supported their adipogenic potential. Furthermore, a parallel increase in the expression of ghrelin-associated enzymatic machinery, prohormone convertase 1/3 (PC1/3) and membrane-bound O-acyltransferase 4 (MBOAT4), was dependent on the expression of preproghrelin in the course of insulin-induced adipogenesis. The coexpression of preproghrelin system and their receptors, GHSR1a and GPR39, during adipogenesis supports an autocrine/paracrine role for these peptides. Preproghrelin, PC1/3, and MBOAT4 exhibited dissimilar expression depending on the white fat depot, revealing their regulation in a positive energy balance situation in mice. The results underscore a key role for preproghrelin-derived peptides on adipogenesis through an autocrine/paracrine mechanism
The Obestatin/GPR39 System Is Up-regulated by Muscle Injury and Functions as an Autocrine Regenerative System
Background: Satellite cell activation is orchestrated by several signals, which induce their differentiation into skeletal muscle fibers. Results: Obestatin and the GPR39 receptor exert an autocrine role on the control of myogenesis. Conclusion: Our data indicate that obestatin/GPR39 is an injury-regulated signal that functions as a myogenic regenerative system. Significance: Strategies to enhance obestatin-mediated signaling could be useful in treating trauma-induced muscle injuries and skeletal muscle myopathies
The NMR structure of human obestatin in membrane-like environments: insights into the structure-bioactivity relationship of obestatin.
The quest for therapeutic applications of obestatin involves, as a first step, the determination of its 3D solution structure and the relationship between this structure and the biological activity of obestatin. On this basis, we have employed a combination of circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy, and modeling techniques to determine the solution structure of human obestatin (1). Other analogues, including human non-amidated obestatin (2) and the fragment peptides (6-23)-obestatin (3), (11-23)-obestatin (4), and (16-23)-obestatin (5) have also been scrutinized. These studies have been performed in a micellar environment to mimic the cell membrane (sodium dodecyl sulfate, SDS). Furthermore, structural-activity relationship studies have been performed by assessing the in vitro proliferative capabilities of these peptides in the human retinal pigmented epithelial cell line ARPE-19 (ERK1/2 and Akt phosphorylation, Ki67 expression, and cellular proliferation). Our findings emphasize the importance of both the primary structure (composition and size) and particular segments of the obestatin molecule that posses significant α-helical characteristics. Additionally, details of a species-specific role for obestatin have also been hypothesized by comparing human and mouse obestatins (1 and 6, respectively) at both the structural and bioactivity levels