16 research outputs found

    Combined expectancies: electrophysiological evidence for the adjustment of expectancy effects

    Get PDF
    BACKGROUND: When subjects use cues to prepare for a likely stimulus or a likely response, reaction times are facilitated by valid cues but prolonged by invalid cues. In studies on combined expectancy effects, two cues can independently give information regarding two dimensions of the forthcoming task. In certain situations, cueing effects on one dimension are reduced when the cue on the other dimension is invalid. According to the Adjusted Expectancy Model, cues affect different processing levels and a mechanism is presumed which is sensitive to the validity of early level cues and leads to online adjustment of expectancy effects at later levels. To examine the predictions of this model cueing of stimulus modality was combined with response cueing. RESULTS: Behavioral measures showed the interaction of cueing effects. Electrophysiological measures of the lateralized readiness potential (LRP) and the N200 amplitude confirmed the predictions of the model. The LRP showed larger effects of response cues on response activation when modality cues were valid rather than invalid. N200 amplitude was largest with valid modality cues and invalid response cues, medium with invalid modality cues, and smallest with two valid cues. CONCLUSION: Findings support the view that the validity of early level expectancies modulates the effects of late level expectancies, which included response activation and response conflict in the present study

    Myocardial T1-mapping at 3T using saturation-recovery: reference values, precision and comparison with MOLLI

    Get PDF
    Background: Myocardial T1-mapping recently emerged as a promising quantitative method for non-invasive tissue characterization in numerous cardiomyopathies. Commonly performed with an inversion-recovery (IR) magnetization preparation at 1.5T, the application at 3T has gained due to increased quantification precision. Alternatively, saturation-recovery (SR) T1-mapping has recently been introduced at 1.5T for improved accuracy. Thus, the purpose of this study is to investigate the robustness and precision of SR T1-mapping at 3T and to establish accurate reference values for native T1-times and extracellular volume fraction (ECV) of healthy myocardium. Methods: Balanced Steady-State Free-Precession (bSSFP) Saturation-Pulse Prepared Heart-rate independent Inversion-REcovery (SAPPHIRE) and Saturation-recovery Single-SHot Acquisition (SASHA) T1-mapping were compared with the Modified Look-Locker inversion recovery (MOLLI) sequence at 3T. Accuracy and precision were studied in phantom. Native and post-contrast T1-times and regional ECV were determined in 20 healthy subjects (10 men, 27 ± 5 years). Subjective image quality, susceptibility artifact rating, in-vivo precision and reproducibility were analyzed. Results: SR T1-mapping showed  0.19; intra: p > 0.09) or consistency (inter: p > 0.07; intra: p > 0.17) between the three methods. Conclusions: Saturation-recovery T1-mapping at 3T yields higher accuracy, comparable inter-subject, inter- and intra-observer variability and less than 30 % precision-loss compared to MOLLI

    Neuro-cognitive mechanisms of conscious and unconscious visual perception: From a plethora of phenomena to general principles

    Get PDF
    Psychological and neuroscience approaches have promoted much progress in elucidating the cognitive and neural mechanisms that underlie phenomenal visual awareness during the last decades. In this article, we provide an overview of the latest research investigating important phenomena in conscious and unconscious vision. We identify general principles to characterize conscious and unconscious visual perception, which may serve as important building blocks for a unified model to explain the plethora of findings. We argue that in particular the integration of principles from both conscious and unconscious vision is advantageous and provides critical constraints for developing adequate theoretical models. Based on the principles identified in our review, we outline essential components of a unified model of conscious and unconscious visual perception. We propose that awareness refers to consolidated visual representations, which are accessible to the entire brain and therefore globally available. However, visual awareness not only depends on consolidation within the visual system, but is additionally the result of a post-sensory gating process, which is mediated by higher-level cognitive control mechanisms. We further propose that amplification of visual representations by attentional sensitization is not exclusive to the domain of conscious perception, but also applies to visual stimuli, which remain unconscious. Conscious and unconscious processing modes are highly interdependent with influences in both directions. We therefore argue that exactly this interdependence renders a unified model of conscious and unconscious visual perception valuable. Computational modeling jointly with focused experimental research could lead to a better understanding of the plethora of empirical phenomena in consciousness research

    Action priming is linked to visual perception in Continuous Flash Suppression

    No full text
    This project provides the primary data and R code to replicate the analyses reported in the manuscript: Valuch, C., Mattler, U. (2019). Action priming is linked to visual perception in Continuous Flash Suppression. Manuscript submitted for publication

    Action priming suppression by forward masks

    No full text

    Action priming is linked to visual perception in continuous flash suppression

    No full text

    The Ring Rotation Illusion: Properties and Links of a Novel Illusion of Motion

    No full text
    We report a novel visual illusion we call the Ring Rotation Illusion (RRI). When a ring of stationary points replaces a circular outline, the ring of points appears to rotate to a halt, although no actual motion has been displayed. Three experiments evaluate the clarity of the illusory rotation. Clarity decreased as the diameter of the circle and ring increased and increased as the number of points forming the ring increased. The optimal interstimulus interval (ISI) between the circle and ring was 90 ms when stimulus presentations lasted 100 ms but 0 ms with 500 ms presentations. We compare the RRI to the Motion Bridging Effect (MBE), a similar illusion in which a stationary ring of points replaces an initial ring of points that spins so rapidly it looks like a stationary outline. A rotation of the stationary ring is seen that usually matches the direction of the initial ring’s invisible spin. Participants reported a slightly more frequent and clearer motion percept with the MBE than RRI. ISI manipulations had similar effects on the two illusions, but the effects of number of points and ring diameter were largely restricted to the RRI. We suggest that both the RRI and MBE motion percepts are produced by a visual heuristic that holds that the transition from an outline circle to a ring of points is plausibly explained by a rapid spin decelerating to a halt, but in the case of the MBE, an additional direction-sensitive mechanism contributes to this percept
    corecore