65 research outputs found

    Optimization of a Runge-Kutta 4th Order Method-based Airbrake Control System for High-Speed Vehicles Using Neural Networks

    Full text link
    The Runge-Kutta 4th Order (RK4) technique is extensively employed in the numerical solution of differential equations for airbrake control system design. However, its computational efficacy may encounter restrictions when dealing with high-speed vehicles that experience intricate aerodynamic forces. Using a Neural Network, a unique technique to improving the RK4-based airbrakes code is provided. The Neural Network is trained on numerous aspects of the high-speed vehicle as well as the current status of the airbrakes. This data was generated through the traditional RK4-based simulations and can predict the state of the airbrakes for any given state of the rocket in real-time. The proposed approach is demonstrated on a high-speed airbrakes control system, achieving comparable or better performance than the traditional RK4-based system while significantly reducing computational time by reducing the number of mathematical operations. The proposed method can adapt to changes in flow conditions and optimize the airbrakes system in real-time

    Risk of severe COVID-19 outcomes after autumn 2022 COVID-19 booster vaccinations: a pooled analysis of national prospective cohort studies involving 7.4 million adults in England, Northern Ireland, Scotland and Wales

    Get PDF
    Background UK COVID-19 vaccination policy has evolved to offering COVID-19 booster doses to individuals at increased risk of severe Illness from COVID-19. Building on our analyses of vaccine effectiveness of first, second and initial booster doses, we aimed to identify individuals at increased risk of severe outcomes (i.e., COVID-19 related hospitalisation or death) post the autumn 2022 booster dose. Methods We undertook a national population-based cohort analysis across all four UK nations through linked primary care, vaccination, hospitalisation and mortality data. We included individuals who received autumn 2022 booster doses of BNT162b2 (Comirnaty) or mRNA-1273 (Spikevax) during the period September 1, 2022 to December 31, 2022 to investigate the risk of severe COVID-19 outcomes. Cox proportional hazard models were used to estimate adjusted hazard ratios (aHR) and 95% confidence intervals (CIs) for the association between demographic and clinical factors and severe COVID-19 outcomes after the autumn booster dose. Analyses were adjusted for age, sex, body mass index (BMI), deprivation, urban/rural areas and comorbidities. Stratified analyses were conducted by vaccine type. We then conducted a fixed-effect meta-analysis to combine results across the four UK nations. Findings Between September 1, 2022 and December 31, 2022, 7,451,890 individuals ≥18 years received an autumn booster dose. 3500 had severe COVID-19 outcomes (2.9 events per 1000 person-years). Being male (male vs female, aHR 1.41 (1.32–1.51)), older adults (≥80 years vs 18–49 years; 10.43 (8.06–13.50)), underweight (BMI <18.5 vs BMI 25.0–29.9; 2.94 (2.51–3.44)), those with comorbidities (≥5 comorbidities vs none; 9.45 (8.15–10.96)) had a higher risk of COVID-19 hospitalisation or death after the autumn booster dose. Those with a larger household size (≥11 people within household vs 2 people; 1.56 (1.23–1.98)) and from more deprived areas (most deprived vs least deprived quintile; 1.35 (1.21–1.51)) had modestly higher risks. We also observed at least a two-fold increase in risk for those with various chronic neurological conditions, including Down's syndrome, immunodeficiency, chronic kidney disease, cancer, chronic respiratory disease, or cardiovascular disease. Interpretation Males, older individuals, underweight individuals, those with an increasing number of comorbidities, from a larger household or more deprived areas, and those with specific underlying health conditions remained at increased risk of COVID-19 hospitalisation and death after the autumn 2022 vaccine booster dose. There is now a need to focus on these risk groups for investigating immunogenicity and efficacy of further booster doses or therapeutics. Funding National Core Studies—Immunity, UK Research and Innovation (Medical Research Council and Economic and Social Research Council), Health Data Research UK, the Scottish Government, and the University of Edinburgh

    Uptake of COVID-19 vaccinations amongst 3,433,483 children and young people : meta-analysis of UK prospective cohorts

    Get PDF
    SARS-CoV-2 infection in children and young people (CYP) can lead to life-threatening COVID-19, transmission within households and schools, and the development of long COVID. Using linked health and administrative data, we investigated vaccine uptake among 3,433,483 CYP aged 5–17 years across all UK nations between 4th August 2021 and 31st May 2022. We constructed national cohorts and undertook multi-state modelling and meta-analysis to identify associations between demographic variables and vaccine uptake. We found that uptake of the first COVID-19 vaccine among CYP was low across all four nations compared to other age groups and diminished with subsequent doses. Age and vaccination status of adults living in the same household were identified as important risk factors associated with vaccine uptake in CYP. For example, 5–11 year-olds were less likely to receive their first vaccine compared to 16–17 year-olds (adjusted Hazard Ratio [aHR]: 0.10 (95%CI: 0.06–0.19)), and CYP in unvaccinated households were less likely to receive their first vaccine compared to CYP in partially vaccinated households (aHR: 0.19, 95%CI 0.13–0.29)

    Adverse events after first and second doses of COVID-19 vaccination in England: a national vaccine surveillance platform self-controlled case series study

    Get PDF
    Objectives To estimate the incidence of adverse events of interest (AEIs) after receiving their first and second doses of coronavirus disease 2019 (COVID-19) vaccinations, and to report the safety profile differences between the different COVID-19 vaccines. Design We used a self-controlled case series design to estimate the relative incidence (RI) of AEIs reported to the Oxford-Royal College of General Practitioners national sentinel network. We compared the AEIs that occurred seven days before and after receiving the COVID-19 vaccinations to background levels between 1 October 2020 and 12 September 2021. Setting England, UK. Participants Individuals experiencing AEIs after receiving first and second doses of COVID-19 vaccines. Main outcome measures AEIs determined based on events reported in clinical trials and in primary care during post-license surveillance. Results A total of 7,952,861 individuals were vaccinated with COVID-19 vaccines within the study period. Among them, 781,200 individuals (9.82%) presented to general practice with 1,482,273 AEIs. Within the first seven days post-vaccination, 4.85% of all the AEIs were reported. There was a 3–7% decrease in the overall RI of AEIs in the seven days after receiving both doses of Pfizer-BioNTech BNT162b2 (RI = 0.93; 95% CI: 0.91–0.94) and 0.96; 95% CI: 0.94–0.98), respectively) and Oxford-AstraZeneca ChAdOx1 (RI = 0.97; 95% CI: 0.95–0.98) for both doses), but a 20% increase after receiving the first dose of Moderna mRNA-1273 (RI = 1.20; 95% CI: 1.00–1.44)). Conclusions COVID-19 vaccines are associated with a small decrease in the incidence of medically attended AEIs. Sentinel networks could routinely report common AEI rates, which could contribute to reporting vaccine safety

    End of 2022/23 season influenza vaccine effectiveness in primary care in Great Britain

    Get PDF
    Background The 2022/23 influenza season in the United Kingdom saw the return of influenza to prepandemic levels following two seasons with low influenza activity. The early season was dominated by A(H3N2), with cocirculation of A(H1N1), reaching a peak late December 2022, while influenza B circulated at low levels during the latter part of the season. From September to March 2022/23, influenza vaccines were offered, free of charge, to all aged 2–13 (and 14–15 in Scotland and Wales), adults up to 49 years of age with clinical risk conditions and adults aged 50 and above across the mainland United Kingdom. Methods End-of-season adjusted vaccine effectiveness (VE) estimates against sentinel primary-care attendance for influenza-like illness, where influenza infection was laboratory confirmed, were calculated using the test negative design, adjusting for potential confounders. Results In the mainland United Kingdom, end-of-season VE against all laboratory-confirmed influenza for all those > 65 years of age, most of whom received adjuvanted quadrivalent vaccines, was 30% (95% CI: −6% to 54%). VE for those aged 18–64, who largely received cell-based vaccines, was 47% (95% CI: 37%–56%). Overall VE for 2–17 year olds, predominantly receiving live attenuated vaccines, was 66% (95% CI: 53%–76%). Conclusion The paper provides evidence of moderate influenza VE in 2022/23

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF
    corecore