14 research outputs found

    Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review

    Get PDF
    Background: State-of-the-art classifiers based on convolutional neural networks (CNNs) were shown to classify images of skin cancer on par with dermatologists and could enable lifesaving and fast diagnoses, even outside the hospital via installation of apps on mobile devices. To our knowledge, at present there is no review of the current work in this research area. Objective: This study presents the first systematic review of the state-of-the-art research on classifying skin lesions with CNNs. We limit our review to skin lesion classifiers. In particular, methods that apply a CNN only for segmentation or for the classification of dermoscopic patterns are not considered here. Furthermore, this study discusses why the comparability of the presented procedures is very difficult and which challenges must be addressed in the future. Methods: We searched the Google Scholar, PubMed, Medline, ScienceDirect, and Web of Science databases for systematic reviews and original research articles published in English. Only papers that reported sufficient scientific proceedings are included in this review. Results: We found 13 papers that classified skin lesions using CNNs. In principle, classification methods can be differentiated according to three principles. Approaches that use a CNN already trained by means of another large dataset and then optimize its parameters to the classification of skin lesions are the most common ones used and they display the best performance with the currently available limited datasets. Conclusions: CNNs display a high performance as state-of-the-art skin lesion classifiers. Unfortunately, it is difficult to compare different classification methods because some approaches use nonpublic datasets for training and/or testing, thereby making reproducibility difficult. Future publications should use publicly available benchmarks and fully disclose methods used for training to allow comparability

    Teledermatology: Comparison of Store-and-Forward Versus Live Interactive Video Conferencing

    Get PDF
    A decreasing number of dermatologists and an increasing number of patients in Western countries have led to a relative lack of clinicians providing expert dermatologic care. This, in turn, has prolonged wait times for patients to be examined, putting them at risk. Store-and-forward teledermatology improves patient access to dermatologists through asynchronous consultations, reducing wait times to obtain a consultation. However, live video conferencing as a synchronous service is also frequently used by practitioners because it allows immediate interaction between patient and physician. This raises the question of which of the two approaches is superior in terms of quality of care and convenience. There are pros and cons for each in terms of technical requirements and features. This viewpoint compares the two techniques based on a literature review and a clinical perspective to help dermatologists assess the value of teledermatology and determine which techniques would be valuable in their practice

    Primary tumor–derived systemic nANGPTL4 inhibits metastasis

    Get PDF
    Primary tumors and distant site metastases form a bidirectionally communicating system. Yet, the molecular mechanisms of this crosstalk are poorly understood. Here, we identified the proteolytically cleaved fragments of angiopoietin-like 4 (ANGPTL4) as contextually active protumorigenic and antitumorigenic contributors in this communication ecosystem. Preclinical studies in multiple tumor models revealed that the C-terminal fragment (cANGPTL4) promoted tumor growth and metastasis. In contrast, the N-terminal fragment of ANGPTL4 (nANGPTL4) inhibited metastasis and enhanced overall survival in a postsurgical metastasis model by inhibiting WNT signaling and reducing vascularity at the metastatic site. Tracing ANGPTL4 and its fragments in tumor patients detected full-length ANGPTL4 primarily in tumor tissues, whereas nANGPTL4 predominated in systemic circulation and correlated inversely with disease progression. The study highlights the spatial context of the proteolytic cleavage-dependent pro- and antitumorigenic functions of ANGPTL4 and identifies and validates nANGPTL4 as a novel biomarker of tumor progression and antimetastatic therapeutic agent

    Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation

    Get PDF
    Background Myeloid-derived suppressor cells (MDSC) are a functional myeloid cell subset that includes myeloid cells with immune suppressive properties. The presence of MDSC has been reported in the peripheral blood of patients with several malignant and non-malignant diseases. So far, direct comparison of MDSC across different diseases and Centers is hindered by technical pitfalls and a lack of standardized methodology. To overcome this issue, we formed a network through the COST Action Mye-EUNITER (www.mye-euniter.eu) with the goal to standardize and facilitate the comparative analysis of human circulating MDSC in cancer, inflammation and infection. In this manuscript, we present the results of the multicenter study Mye-EUNITER MDSC Monitoring Initiative, that involved 13 laboratories and compared circulating MDSC subsets across multiple diseases, using a common protocol for the isolation, identification and characterization of these cells. Methods We developed, tested, executed and optimized a standard operating procedure for the isolation and immunophenotyping of MDSC using blood from healthy donors. We applied this procedure to the blood of almost 400 patients and controls with different solid tumors and non-malignant diseases. The latter included viral infections such as HIV and hepatitis B virus, but also psoriasis and cardiovascular disorders. Results We observed that the frequency of MDSC in healthy donors varied substantially between centers and was influenced by technical aspects such as the anticoagulant and separation method used. Expansion of polymorphonuclear (PMN)-MDSC exceeded the expansion of monocytic MDSC (M-MDSC) in five out of six solid tumors. PMN-MDSC expansion was more pronounced in cancer compared with infection and inflammation. Programmed death-ligand 1 was primarily expressed in M-MDSC and e-MDSC and was not upregulated as a consequence of disease. LOX-1 expression was confined to PMN-MDSC. Conclusions This study provides improved technical protocols and workflows for the multi-center analysis of circulating human MDSC subsets. Application of these workflows revealed a predominant expansion of PMN-MDSC in solid tumors that exceeds expansion in chronic infection and inflammation

    Pathologist-level classification of histopathological melanoma images with deep neural networks

    No full text
    Background: The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports 25-26% of discordance for classifying a benign nevus versus malignant melanoma. Deep learning was successfully implemented to enhance the precision of lung and breast cancer diagnoses. The aim of this study is to illustrate the potential of deep learning to assist human assessment for a histopathologic melanoma diagnosis. Methods: Six hundred ninety-five lesions were classified by an expert histopathologist in accordance with current guidelines (350 nevi and 345 melanomas). Only the haematoxylin and eosin stained (H&E) slides of these lesions were digitalised using a slide scanner and then randomly cropped. Five hundred ninety-five of the resulting images were used for the training of a convolutional neural network (CNN). The additional 100 H&E image sections were used to test the results of the CNN in comparison with the original class labels. Findings: The total discordance with the histopathologist was 18% for melanoma (95% confidence interval [CI]: 7.4-28.6%), 20% for nevi (95% CI: 8.9-31.1%) and 19% for the full set of images (95% CI: 11.3-26.7%). Interpretation: Even in the worst case, the discordance of the CNN was about the same compared with the discordance between human pathologists as reported in the literature. Despite the vastly reduced amount of data, time necessary for diagnosis and cost compared with the pathologist, our CNN archived on-par performance. Conclusively, CNNs indicate to be a valuable tool to assist human melanoma diagnoses. (C) 2019 The Author(s). Published by Elsevier Ltd

    Teledermatology: Comparison of Store-and-Forward Versus Live Interactive Video Conferencing

    Get PDF
    A decreasing number of dermatologists and an increasing number of patients in Western countries have led to a relative lack of clinicians providing expert dermatologic care. This, in turn, has prolonged wait times for patients to be examined, putting them at risk. Store-and-forward teledermatology improves patient access to dermatologists through asynchronous consultations, reducing wait times to obtain a consultation. However, live video conferencing as a synchronous service is also frequently used by practitioners because it allows immediate interaction between patient and physician. This raises the question of which of the two approaches is superior in terms of quality of care and convenience. There are pros and cons for each in terms of technical requirements and features. This viewpoint compares the two techniques based on a literature review and a clinical perspective to help dermatologists assess the value of teledermatology and determine which techniques would be valuable in their practice

    Prediction of melanoma evolution in melanocytic nevi via artificial intelligence: A call for prospective data

    No full text
    Recent research revealed the superiority of artificial intelligence over dermatologists to diagnose melanoma from images. However, 30-50% of all melanomas and more than half of those in young patients evolve from initially benign lesions. Despite its high relevance for melanoma screening, neither clinicians nor computers are yet able to reliably predict a nevus' oncologic transformation. The cause of this lies in the static nature of lesion presentation in the current standard of care, both for clinicians and algorithms. The status quo makes it difficult to train algorithms (and clinicians) to precisely assess the likelihood of a benign skin lesion to transform into melanoma. In addition, it inhibits the precision of current algorithms since 'evolution' image features may not be part of their decision. The current literature reveals certain types of melanocytic nevi (i.e. 'spitzoid' or 'dysplastic' nevi) and criteria (i.e. visible vasculature) that, in general, appear to have a higher chance to transform into melanoma. However, owing to the cumulative nature of oncogenic mutations in melanoma, a more fine-grained early morphologic footprint is likely to be detectable by an algorithm. In this perspective article, the concept of melanoma prediction is further explored by the discussion of the evolution of melanoma, the concept for training of such a nevi classifier and the implications of early melanoma prediction for clinical practice. In conclusion, the authors believe that artificial intelligence trained on prospective image data could be transformative for skin cancer diagnostics by (a) predicting melanoma before it occurs (i.e. pre-in situ) and (b) further enhancing the accuracy of current melanoma classifiers. Necessary prospective images for this research are obtained via free mole-monitoring mobile apps. (C) 2019 The Authors. Published by Elsevier Ltd

    Integrating Patient Data Into Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review

    No full text
    BackgroundRecent years have been witnessing a substantial improvement in the accuracy of skin cancer classification using convolutional neural networks (CNNs). CNNs perform on par with or better than dermatologists with respect to the classification tasks of single images. However, in clinical practice, dermatologists also use other patient data beyond the visual aspects present in a digitized image, further increasing their diagnostic accuracy. Several pilot studies have recently investigated the effects of integrating different subtypes of patient data into CNN-based skin cancer classifiers. ObjectiveThis systematic review focuses on the current research investigating the impact of merging information from image features and patient data on the performance of CNN-based skin cancer image classification. This study aims to explore the potential in this field of research by evaluating the types of patient data used, the ways in which the nonimage data are encoded and merged with the image features, and the impact of the integration on the classifier performance. MethodsGoogle Scholar, PubMed, MEDLINE, and ScienceDirect were screened for peer-reviewed studies published in English that dealt with the integration of patient data within a CNN-based skin cancer classification. The search terms skin cancer classification, convolutional neural network(s), deep learning, lesions, melanoma, metadata, clinical information, and patient data were combined. ResultsA total of 11 publications fulfilled the inclusion criteria. All of them reported an overall improvement in different skin lesion classification tasks with patient data integration. The most commonly used patient data were age, sex, and lesion location. The patient data were mostly one-hot encoded. There were differences in the complexity that the encoded patient data were processed with regarding deep learning methods before and after fusing them with the image features for a combined classifier. ConclusionsThis study indicates the potential benefits of integrating patient data into CNN-based diagnostic algorithms. However, how exactly the individual patient data enhance classification performance, especially in the case of multiclass classification problems, is still unclear. Moreover, a substantial fraction of patient data used by dermatologists remains to be analyzed in the context of CNN-based skin cancer classification. Further exploratory analyses in this promising field may optimize patient data integration into CNN-based skin cancer diagnostics for patients’ benefits
    corecore