146 research outputs found

    Telomere dynamics in the Pacific crown-of-thorns seastar (Acanthaster cf. solaris): effect of age, diet, and tissue type

    Get PDF
    Population irruptions of crown-of-thorns seastar (CoTS, Acanthaster spp.) represent a perennial threat to Indo-Pacific coral reefs. Age determination of CoTS is challenging, thereby hindering understanding and management of this nuisance species. Telomeres, which are protective DNA structure found at the ends of eukaryotic chromosomes that shorten at each cell division, have been used to estimate age in wild animals. To investigate the use of telomeres in CoTS, we optimized a quantitative PCR protocol to measure relative telomere length (rTL) in CoTS for the first time. Comparing rTL among four age groups (4, 7, 16, > 24 months post-settlement), we found that adult CoTS generally exhibit shorter rTL than juveniles, which is the first evidence of age-related telomere attrition in CoTS. However, there was large within-age class variation, and no significant relationships were found between adult CoTS rTL and potential age-indicating external features. Furthermore, we found accelerated telomere attrition under sub-optimal diet, where individuals that were fed crustose coralline algae for 16 months exhibited shorter rTL than their counterparts fed on coral. A positive correlation was found between rTL of tube feet and pyloric caeca, suggesting synchronization of telomere dynamics across somatic tissues in CoTS. Overall, our results suggest that rTL could be used to classify CoTS into broad age groups, though individual variation constrains the ability to resolve specific cohorts. The present study contributes to the understanding of telomere dynamics in marine invertebrates, while laying the groundwork for future research into rTL as biomarker for age and potentially stress for CoTS

    Ocean Acidification Changes Abiotic Processes but Not Biotic Processes in Coral Reef Sediments

    Get PDF
    In coral reefs, sediments play a crucial role in element cycling by contributing to primary production and the remineralization of organic matter. We studied how future ocean acidification (OA) will affect biotic and abiotic processes in sediments from two coral reefs of the Great Barrier Reef, Australia. This was investigated in the laboratory under conditions where water-sediment exchange was dominated by molecular diffusion (Magnetic Island) or by porewater advection (Davies Reef). OA conditions (+ΔpCO2: 170–900 μatm, −ΔpH: 0.1–0.4) did not affect photosynthesis, aerobic and anaerobic organic matter remineralization, and growth of microphytobenthos. However, microsensor measurements showed that OA conditions reduced the porewater pH. Under diffusive conditions these changes were limited to the upper sediment layers. In contrast, advective conditions caused a deeper penetration of low pH water into the sediment resulting in an earlier pH buffering by dissolution of calcium carbonate (CaCO3). This increased the dissolution of Davis Reef sediments turning them from net precipitating (−0.8 g CaCO3 m−2 d−1) under ambient to net dissolving (1 g CaCO3 m−2 d−1) under OA conditions. Comparisons with in-situ studies on other reef sediments show that our dissolution rates are reasonable estimates for field settings. We estimate that enhanced dissolution due to OA will only have a minor effect on net ecosystem calcification of the Davies Reef flat (<4%). However, it could decrease recent sediment accumulation rates in the lagoon by up to 31% (by 0.2–0.4 mm year−1), reducing valuable reef space. Furthermore, our results indicate that high-magnesium calcite is predominantly dissolving in the studied sediments and a drastic reduction in this mineral can be expected on Davis Reef lagoon in the near future, leaving sediments of an altered mineral composition. This study demonstrates that biotic sediment processes will likely not directly be affected by OA. Ensuing indirect effects of OA-induced sediment dissolution on biotic processes are discussed

    Adjusting tropical marine water quality guideline values for elevated ocean temperatures

    Get PDF
    Increased frequency of summer heatwaves and poor water quality are two of the most prevalent and severe pressures faced by coral reefs. While these pressures often co-occur, their potential risks to tropical marine species are usually considered independently. Here, we extended the application of multisubstance-Potentially Affected Fraction (ms-PAF) to a nonchemical stressor, elevated sea surface temperature. We then applied this method to calculate climate-Adjusted water quality guideline values (GVs) for two reference toxicants, copper and the herbicide diuron, for tropical marine species. First, we developed a species sensitivity distribution (SSD) for thermal stress based on published experimental data for 41 tropical benthic marine species using methods adapted from water quality GV derivation. This enabled quantitative predictions of community effects as temperatures exceeded acclimation values. The resulting protective temperature values (PTx) were similar to temperatures known to initiate coral bleaching and are therefore relevant for application in multistressor risk assessments. The extended ms-PAF method enabled the adjustment of current water quality GVs to account for thermal stress events. This approach could be applied to other ecosystems and other non-contaminant stressors (e.g., sediment, low salinity, anoxia, and ocean acidification), offering an alternative approach for deriving environmental GVs, reporting and assessing the risk posed by multiple stressors

    Climate change doubles sedimentation-induced coral recruit mortality

    Get PDF
    Coral reef replenishment is threatened by global climate change and local water-quality degradation, including smothering of coral recruits by sediments generated by anthropogenic activities. Here we show that the ability of Acropora millepora recruits to remove sediments diminishes under future climate conditions, leading to increased mortality. Recruits raised under future climate scenarios for fourteen weeks (highest treatment: +1.2 °C, pCO2: 950 ppm) showed twofold higher mortality following repeated sediment deposition (50% lethal sediment concentration LC50: 14–24 mg cm−2) compared to recruits raised under current climate conditions (LC50: 37–51 mg cm−2), depending on recruit age at the time of sedimentation. Older and larger recruits were more resistant to sedimentation and only ten-week-old recruits grown under current climate conditions survived sediment loads possible during dredging operations. This demonstrates that water-quality guidelines for managing sediment concentrations will need to be climate-adjusted to protect future coral recruitment

    Effects of climate change and light limitation on coral recruits

    Get PDF
    Climate change impacts and light attenuation from suspended sediments due to runoff, natural resuspension or dredging, can both impede the replenishment of coral populations. Here we tested the independent and combined impacts of climate change (current temperature and dissolved CO2, and two future climate scenarios) and a one-month-long light attenuation period at 5 different light levels (0.1 to 4 mol photons m−2 d−1) on early Acropora millepora recruits. Additionally, we evaluated whether the effects were age dependent by comparing responses of recruits that were one-month-old (‘early attenuation’) vs two months old (‘late attenuation’). Recruit survival, size and Symbiodiniaceae densities increased slightly under moderate future climate conditions (current temperature +0.44°C, 692 ppm pCO2), but decreased under a more severe climate scenario (+0.94°C, 985 ppm pCO2). Light attenuation significantly decreased recruit survival, size and Symbiodiniaceae densities only for recruits exposed to the late attenuation, suggesting an increasing reliance on photosynthesis as recruits age. Under the more severe climate scenario tested, recruit survival was diminished by both climate change (≤ 18 ± 4 [SE]% in the early attenuation) and light limitation (≤ 32 ± 6% in the late attenuation) compared with controls. However, there was no interaction between future climate scenarios and light attenuation indicating these effects were additive. This study demonstrates the potential effects of light limitation and future climate conditions on coral recruitment success and highlights the need to manage the timing of sediment-generating activities near reefs to optimise light availability for several months post-settlement

    The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World

    Get PDF
    Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (∼432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (ΔO2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA

    Changes in microbial communities in coastal sediments along natural CO2gradients at a volcanic vent in Papua New Guinea

    Get PDF
    Natural CO2 venting systems can mimic conditions that resemble intermediate to high pCO2 levels as predicted for our future oceans. They represent ideal sites to investigate potential long-term effects of ocean acidification on marine life. To test whether microbes are affected by prolonged exposure to pCO2 levels, we examined the composition and diversity of microbial communities in oxic sandy sediments along a natural CO2 gradient. Increasing pCO2 was accompanied by higher bacterial richness and by a strong increase in rare members in both bacterial and archaeal communities. Microbial communities from sites with CO2 concentrations close to today's conditions had different structures than those of sites with elevated CO2 levels. We also observed increasing sequence abundance of several organic matter degrading types of Flavobacteriaceae and Rhodobacteraceae, which paralleled concurrent shifts in benthic cover and enhanced primary productivity. With increasing pCO2, sequences related to bacterial nitrifying organisms such as Nitrosococcus and Nitrospirales decreased, and sequences affiliated to the archaeal ammonia-oxidizing Thaumarchaeota Nitrosopumilus maritimus increased. Our study suggests that microbial community structure and diversity, and likely key ecosystem functions, may be altered in coastal sediments by long-term CO2 exposure to levels predicted for the end of the century

    Model fit versus biological relevance: evaluating photosynthesis-temperature models for three tropical seagrass species

    Get PDF
    When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike
    corecore