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Model fit versus biological 
relevance: Evaluating 
photosynthesis-temperature 
models for three tropical seagrass 
species
Matthew P. Adams1, Catherine J. Collier2,3, Sven Uthicke4, Yan X. Ow2,3,5, Lucas Langlois3 & 
Katherine R. O’Brien1

When several models can describe a biological process, the equation that best fits the data is typically 
considered the best. However, models are most useful when they also possess biologically-meaningful 
parameters. In particular, model parameters should be stable, physically interpretable, and transferable 
to other contexts, e.g. for direct indication of system state, or usage in other model types. As an 
example of implementing these recommended requirements for model parameters, we evaluated 
twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, 
based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can 
be obtained. All models were formulated in terms of parameters characterising the thermal optimum 
(Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits 
of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass 
to temperature change. Our study exemplifies an approach to model selection which optimises the 
usefulness of empirical models for both modellers and ecologists alike.

For relatively simple biological process rates, several empirical models may adequately describe the process rate’s 
dependence on environmental factors1. The best model is then typically chosen based on goodness of fit2.

However, the selected model may not be particularly informative if its parameters have no intrinsic biological 
meaning. Platt et al.3 and Jassby & Platt4 suggested that parameters of models fitted to biological processes should 
be both stable (well constrained and mutually independent) and physically interpretable. For greatest utility, we 
suggest that the model parameters should also be transferable. Parameters that are transferable have usage beyond 
the selected empirical model; they may be directly compared to experimentally measurable quantities to pro-
vide an indication of system state, and/or easily used in different model types. For example, the minimum light 
requirement (MLR) of seagrass is a transferable parameter, as comparison of local light levels to MLR indicates 
whether seagrass are at risk of loss due to light deprivation5,6, and MLR can be used to parameterise both mecha-
nistic7 and statistical8,9 coastal ecosystem models. Model parameters that are (1) stable, (2) physically interpreta-
ble and (3) transferable have the greatest biological meaning, and therefore we define parameters that satisfy these 
three criteria as biologically-meaningful.

In this paper, we demonstrate a model selection procedure that gives similar importance to goodness of fit 
and obtaining biologically-meaningful parameters. To this end, aquatic plant photosynthesis is a biological pro-
cess which has a well-established dependence on temperature, but the parameterisation of this process is not yet 
standardised. Aquatic plant photosynthetic rates rise gradually with temperature up to a thermal optimum10,11 
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and sharply decrease at higher temperatures12. This photosynthesis-temperature relationship has been previously 
fitted to exponential13, Gaussian11,14, and enzyme kinetics-based functions15. Of these functions, only the enzyme 
kinetics-based function captures the shape of the photosynthesis-temperature curve over the full range of temper-
atures16, including the sharp decline in photosynthetic rates expected at high temperatures. However, the enzyme 
kinetics-based function is not written in terms of biologically-meaningful parameters17, so may not be the best 
model for capturing the dependence of photosynthesis on temperature.

The purpose of this study was to apply a model selection approach that gives similar importance to fitting the 
data and obtaining biological-meaningful parameters, to identify the best model for the dependence of aquatic 
plant photosynthesis on temperature. Twelve models (Table 1) were fitted to seven photosynthesis-temperature 
curves for seagrass. The photosynthesis-temperature curves were obtained from three tropical seagrass species 
(Cymodocea serrulata, Halodule uninervis and Zostera muelleri) growing at two different locations on the eastern 
coast of Queensland, Australia (Green Island and Moreton Bay) in two different seasons (summer and winter). 
The models were formulated in terms of as many biologically-meaningful parameters as possible, including the 
thermal optima (Topt) and maxima (Tmax) for seagrass photosynthesis. These two critical temperatures can be 
compared to seawater temperatures in areas where tropical seagrass currently colonise, to provide an indication of 
the vulnerability of these seagrasses to ocean warming18. Specifically, thermal optima for seagrass photosynthesis 
are expected to be higher than thermal optima for growth19, due to the synergistic effects of increased respiration 
and sulphide intrusion at elevated temperatures20,21; thus, seagrass present in water temperatures close to Topt 
and Tmax for photosynthesis are likely to be at risk of heat stress-induced decline. The model selection approach 
employed here can also be applied in several other biological contexts to increase the utility of fitted models, and 
encourage standardisation of model parameterisations for well-understood biological processes1.

Results
All 12 models were successfully fitted to all seven photosynthesis-temperature curves of seagrass using nonlinear 
regression. The fit of all 12 models to the photosynthesis-temperature curve of C. serrulata in summer at Green 
Island is shown in Fig. 1, and the fit of the models to the other six photosynthesis-temperature curves is shown 
in Supplementary Figures S2–S7. Parameters identified for the fit of all models to all photosynthesis-temperature 
curves are listed in Supplementary Table S1.

We next evaluated all 12 models to identify which model was the best. To identify the best empirical model 
for fitting the temperature-dependence of aquatic plant photosynthesis, we used two criteria: (1) goodness of fit, 
by comparing four statistical metrics (Akaike weight, Schwarz weight, R2 and refined index of agreement), and 
(2) the ease at which biologically-meaningful parameters, specifically Topt, Tmax and Pmax, can be obtained (Fig. 2).

Best models, based on goodness of fit. Akaike and Schwarz weights were better than the other two 
statistical metrics (adjusted R2 and refined index of agreement) at identifying differences between model fits to 
the data. We came to this conclusion because adjusted R2 and refined index of agreement values varied more 
substantially between treatments than between models, whilst Akaike and Schwarz weights varied more substan-
tially between models than between treatments. Specifically, when averaged across the seven treatments, all 12 
models produced similar mean adjusted R2 values and refined indices of agreement ( . ≤ . ≤ .0 69 adj R 0 762 ; 
. ≤ ≤ .d0 75 0 79r ). However, there was far more variability in adjusted R2 values and refined indices of agreement 

for each of the seven treatments when averaged across the 12 models ( . ≤ . ≤ .0 43 adj R 0 892 ; . ≤ ≤ .d0 66 0 85r ). 
In contrast, when averaged over the seven treatments, Akaike and Schwarz weights varied substantially between 
the 12 models ( . ≤ ≤ .w0 02 0 21A ; . ≤ ≤ .w0 01 0 20B ). There was no difference in Akaike and Schwarz weights 
between treatments when averaged across all models because these metrics are indicators of relative performance 
and therefore trivially give exactly 1/12 so that they add to unity over the 12 models.

Model
Minimum 

temperature
Optimum 

temperature
Maximum 

photosynthesis rate
Maximum 

temperature

Briére-154 Tmin Topt Pmax Tmax

Briére-254 Tmin Topt Pmax Tmax

Deutsch55 − ∞ Topt Pmax Tmax

Johnson56 0 K Topt Pmax + ∞ 

Lactin57 Undefined or Tmin
a Topt Pmax Tmax

O’Neill58 − ∞ Topt Pmax Tmax

Ratkowsky16 Tmin Topt Pmax Tmax

Room59 − ∞ Topt Pmax + ∞ 

Spain60 − ∞ Topt Pmax Tmax

Thébault61 Tmin Topt Pmax + ∞ 

van der Heide17 Tmin Topt Pmax Tmax

Yan and Hunt26 0 °C Topt Pmax Tmax

Table 1.  Summary of the 12 models fitted to photosynthesis-temperature curves in this paper. These 
models are mathematically defined in Supplementary Section S1. aThe Lactin model may or may not have a Tmin, 
depending on the sign of its intermediate parameter k2.
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We therefore identified the best fitting models based on mean Akaike and Schwarz weights (averaged over the 
seven treatments), and for each of these two metrics we identified the six best models. The six best models based 
on mean Akaike weight, ranked from first to sixth, were the Johnson, Room, O’Neill, Yan and Hunt, Ratkowsky, 
and Deutsch models (Table 2). The six best models based on mean Schwarz weight, ranked from first to sixth, 
were the Johnson, Yan and Hunt, Briére-1, Room, O’Neill, and Ratkowsky models (Table 3). On first glance, this 
suggests that the Johnson model may be the best model based on goodness of fit. However, this conclusion is 
biased by the dataset for C. serrulata in winter at Moreton Bay, for which the Johnson model performed especially 
well and obtained wA and wB values greater than 0.8. In contrast, wA and wB values were less than 0.5 for all other 
datasets and models.

Temporarily excluding the dataset for C. serrulata in winter at Moreton Bay, and recalculating the mean wA 
and wB values for each model averaged over the remaining six treatments, yields the same six best models for 
mean Akaike and Schwarz weights, but in a different order (Tables 2 and 3). Hence, regardless of whether the 
dataset for C. serrulata in winter at Moreton Bay is excluded or not, the best six models based on either mean 

Figure 1. All 12 models fitted to the photosynthesis-temperature curve of C. serrulata at Green Island in 
summer. Error bars indicate ± SD.
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Akaike weight or mean Schwarz weight were unchanged. We kept for consideration as the best model, based on 
goodness fit, only those models which were either one of the best six models based on mean Akaike weight or one 
of the best six models based on mean Schwarz weight. This yields that the seven best models based on goodness 
of fit were, in no particular order: the Briére-1, Deutsch, Johnson, O’Neill, Ratkowsky, Room, and Yan and Hunt 
models.

Best models, based on the ease of obtaining biologically-meaningful parameters. Five of the 
12 models could be easily used to obtain biologically-meaningful parameters, as follows. Three models (Lactin, 
Ratkowsky and Spain) were ruled out because they required solution of analytically intractable equations to 
obtain biologically-meaningful parameters. Three other models (Johnson, Room and Thébault) cannot predict 
the maximum temperature (Table 1), which is an important parameter to identify due to the potential impact of 
climate change on seagrass distribution18. The O’Neill model also could not satisfactorily estimate the maximum 
temperature for two of the seven treatments (Supplementary Table S1). The remaining five models (Briére-1, 
Briére-2, Deutsch, van der Heide, and Yan and Hunt) could predict the optimum temperature, maximum pho-
tosynthesis rate, and maximum temperature, and have simple analytical forms. Less than half of the 12 models 
can predict the minimum temperature (Table 1); however, globally, aquatic plants are more greatly threatened 
by elevated temperatures than cold temperatures22–25, so we considered the minimum temperature to be a less 
important parameter to estimate than the optimum and maximum temperatures. Hence, we kept for consider-
ation the Briére-1, Briére-2, Deutsch, van der Heide, and Yan and Hunt models as the best models based on the 
ease of obtaining biologically-meaningful parameters.

Figure 2. Criteria for selecting the best model, and how the 12 tested models satisfied these criteria. 

Species, Season, Location Briére-1 Briére-2 Deutsch Johnson Lactin O’Neill Ratkowsky Room Spain Thébault van der Heide Yan and Hunt

C. serrulata, Summer, Green 
Island 0.0977 0.0859 0.1030 0.0566 0.0933 0.0880 0.1221 0.1320 0.0075 0.0001 0.0166 0.1974

C. serrulata, Summer, 
Moreton Bay 0.0720 0.0635 0.0819 0.1026 0.1190 0.1551 0.1438 0.0859 0.0827 0.0000 0.0000 0.0937

C. serrulata, Winter, Moreton 
Bay 0.0005 0.0005 0.0030 0.8553 0.0019 0.0541 0.0070 0.0037 0.0011 0.0630 0.0000 0.0100

H. uninervis, Summer, Green 
Island 0.0510 0.1104 0.1310 0.0575 0.0247 0.0531 0.1114 0.0921 0.0054 0.0409 0.2170 0.1056

H. uninervis, Summer, 
Moreton Bay 0.0136 0.0135 0.0808 0.1709 0.0535 0.2602 0.1170 0.0914 0.0188 0.0000 0.0000 0.1804

H. uninervis, Winter, 
Moreton Bay 0.3373 0.1639 0.1126 0.0018 0.0861 0.0193 0.0589 0.1050 0.0067 0.0000 0.0006 0.1079

Z. muelleri, Summer, 
Moreton Bay 0.0000 0.1096 0.1087 0.2172 0.0000 0.0812 0.1103 0.2264 0.0000 0.1405 0.0046 0.0016

Mean 0.0817 0.0782 0.0887 0.2088 0.0541 0.1016 0.0958 0.1052 0.0174 0.0349 0.0341 0.0995

Mean (excluding C. serrulata, 
Winter, Moreton Bay) 0.0953 0.0911 0.1030 0.1011 0.0628 0.1095 0.1106 0.1221 0.0202 0.0302 0.0398 0.1144

Table 2.  Akaike weights wA of all models fitted to all photosynthesis-temperature curves.
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The Yan and Hunt model is the best model, based on both criteria. We next identified which of 
the 12 models satisfied both criteria, from (1) the seven best models based on goodness of fit and (2) the five best 
models based on obtaining biologically-meaningful parameters (Fig. 2). Three models satisfied both criteria - the 
Briére-1, Deutsch, and Yan and Hunt models - so these three models were further compared, based on goodness 
of fit and their parameters, to identify the best model. The Briére-1, and Yan and Hunt models are written only in 
terms of biologically-meaningful parameters Pmax, Topt and Tmax, whilst the Deutsch model requires one additional 
shape parameter a (Supplementary Section S1). Based on goodness of fit, the Yan and Hunt model is always better 
than both the Briére-1 and Deutsch models, for both Akaike and Schwarz weights, whether or not the dataset for 
C. serrulata in winter at Moreton Bay is excluded or not (Tables 2 and 3).

Thus the Yan and Hunt model is the best of the 12 models considered here, when accounting for both the ease 
at which biologically-meaningful parameters can be obtained, and achieving goodness of fit between model and 
data. The fit of the Yan and Hunt model to all seven photosynthesis-temperature curves is shown in Fig. 3, and the 
parameters obtained from this model fitting are listed in Table 4.

Discussion
Based on goodness of fit to the seven treatments, and the ease at which biologically-meaningful parameters could 
be obtained (Fig. 2), the best model for seagrass photosynthesis was the Yan and Hunt model26,
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In this equation P(T) is the photosynthesis rate at temperature T, Pmax is the maximum photosynthesis rate 
which occurs at the optimum temperature Topt, and Tmax is the maximum temperature, at which the photosyn-
thesis rate is zero. Fitting the Yan and Hunt model to the data provides parameters Pmax, Topt and Tmax, which 
can then be used independently of the model. The shape parameter Q10, which represents the factor increase in 
photosynthesis rate due to a temperature increase of 10 °C at temperatures below Topt, can then be found by fitting 
equation (2) to the temperature data that is less than the optimum, T <  Topt, where Topt was found by fitting the 
Yan and Hunt model to the data.

The four parameters Pmax, Topt, Tmax and Q10 are all stable, physically interpretable, and transferable, which 
are the three requirements for our definition of biologically-meaningful parameters. First, in terms of stability, 
uncertainty bounds calculated for these parameters indicated that they were well-constrained (see Table 4), and 
there was no obvious mutual dependence of the Yan and Hunt model parameters. Second, all four parameters 
have clear physical interpretations, based on their definitions provided previously in this section: Pmax is the max-
imum photosynthesis rate which occurs at the temperature Topt, Tmax is the maximum temperature at and above 
which the photosynthesis rate becomes negligible, and, for temperatures below Topt, Q10 is the factor increase in 
photosynthesis rate due to a temperature increase of 10 °C.

We have higher confidence in our estimates for thermal optima (Topt) than our estimates for thermal maxima 
(Tmax), because thermal optima were obtained by interpolation of the data, whilst thermal maxima were obtained 
from extrapolation of the data and were relatively sensitive to the gross photosynthesis rate measured at one tem-
perature (43 °C) above the optimum. For future investigations of seagrass photosynthesis-temperature curves, 
more accurate estimates of Tmax can be obtained by measuring gross photosynthesis rates at several temperatures 
above Topt.

Finally, the four parameters are all transferable, as they can be applied in other contexts. Topt and Tmax charac-
terise temperatures above which seagrass is vulnerable to heat stress12; close to these temperatures, small changes 
in water temperature can substantially alter the ecological function of seagrass meadows27 over timescales 

Species, Season, Location Briére-1 Briére-2 Deutsch Johnson Lactin O’Neill Ratkowsky Room Spain Thébault van der Heide Yan and Hunt

C. serrulata, Summer, Green 
Island 0.1451 0.0670 0.0804 0.0442 0.0728 0.0686 0.0952 0.1030 0.0058 0.0000 0.0246 0.2932

C. serrulata, Summer, 
Moreton Bay 0.1193 0.0552 0.0712 0.0892 0.1035 0.1349 0.1250 0.0747 0.0719 0.0000 0.0000 0.1551

C. serrulata, Winter, Moreton 
Bay 0.0009 0.0005 0.0029 0.8472 0.0018 0.0536 0.0069 0.0037 0.0011 0.0624 0.0000 0.0189

H. uninervis, Summer, Green 
Island 0.0726 0.0825 0.0979 0.0430 0.0185 0.0397 0.0832 0.0688 0.0040 0.0306 0.3089 0.1502

H. uninervis, Summer, 
Moreton Bay 0.0220 0.0115 0.0688 0.1454 0.0455 0.2214 0.0995 0.0777 0.0160 0.0000 0.0000 0.2922

H. uninervis, Winter, Moreton 
Bay 0.4578 0.1168 0.0802 0.0013 0.0613 0.0138 0.0420 0.0748 0.0048 0.0000 0.0008 0.1465

Z. muelleri, Summer, Moreton 
Bay 0.0000 0.1090 0.1082 0.2162 0.0000 0.0809 0.1098 0.2253 0.0000 0.1398 0.0080 0.0028

Mean 0.1168 0.0632 0.0728 0.1981 0.0434 0.0875 0.0802 0.0897 0.0148 0.0333 0.0489 0.1513

Mean (excluding C. serrulata, 
Winter, Moreton Bay) 0.1361 0.0737 0.0844 0.0899 0.0503 0.0932 0.0925 0.1041 0.0171 0.0284 0.0571 0.1733

Table 3.  Schwarz weights wB of all models fitted to all photosynthesis-temperature curves.
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potentially as small as a few days28. Pmax estimates maximum productivity, which can be used to compare seagrass 
growth traits between different species29. Our obtained Q10 values for photosynthesis experimentally verify the 
hypothesis that Q10 values generally range between 2 and 330, an assumption which is applied in coastal ecolog-
ical models31. Several empirical photosynthesis-temperature models include Pmax, Topt and Tmax as parameters 
(Table 1), so these parameters are transferable to empirical photosynthesis-temperature models other than the 
Yan and Hunt model, and could also be implemented in plant growth models that are based on carbon balance32. 
Ecological implications of our results will be discussed further in a subsequent publication.

Limitations of the Yan and Hunt model. One limitation of the Yan and Hunt model is that the minimum 
temperature is assumed to be zero. We do not consider this to be a major limitation, because (1) data may not be 
available at low temperatures, and (2) local and global ocean warming is a greater threat to seagrass distribution 

Figure 3. Fitting the Yan and Hunt model to the seven photosynthesis-temperature curves of tropical 
seagrass. GI =  Green Island, MB =  Moreton Bay. Error bars indicate ± SD.

Species Season Location Pmax (mg C g−1 DW h−1) Topt (°C) Tmax (°C) P0 (mg C g−1 DW h−1) Q10 Adj. R2

C. serrulata Summer Green Island 3.9 ±  0.2 34.9 ±  0.5 43.7 ±  0.3 1.3 ±  0.2 2.4 ±  0.3 0.76

C. serrulata Summer Moreton Bay 3.9 ±  0.1 35.4 ±  0.3 44.2 ±  0.3 1.3 ±  0.1 2.2 ±  0.2 0.84

C. serrulata Winter Moreton Bay 2.9 ±  0.1 35.8 ±  0.3 44.7 ±  0.3 0.8 ±  0.1 2.7 ±  0.2 0.84

H. uninervis Summer Green Island 3.9 ±  0.3 34.0 ±  0.9 44.6 ±  0.9 1.5 ±  0.3 2.7 ±  0.7 0.44

H. uninervis Summer Moreton Bay 5.2 ±  0.1 35.8 ±  0.2 44.4 ±  0.2 1.6 ±  0.1 2.4 ±  0.2 0.90

H. uninervis Winter Moreton Bay 5.5 ±  0.2 34.9 ±  0.3 44.6 ±  0.3 2.1 ±  0.2 2.1 ±  0.2 0.85

Z. muelleri Summer Moreton Bay 4.3 ±  0.3 30.9 ±  1.0 43.6 ±  0.7 2.5 ±  0.4 2.2 ±  0.4 0.55

Table 4.  Parameters (mean ± SE) of all photosynthesis-temperature curves of tropical seagrass, found 
using the Yan and Hunt model.
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than cold temperatures22–25, so identifying the temperature-dependence of biological rates near the optimum and 
maximum temperatures is of primary importance. To consider cases where accurate modelling of low tempera-
tures is required33, a four-parameter Yan and Hunt model can instead be used, which includes Tmin as a parameter 
and is defined in equation (4) of Yan et al.26. However, we recommend that the four-parameter Yan and Hunt 
model should only be used if the data available for model fitting covers a wider temperature range with a larger 
number of different temperature values than measured here (15 to 43 °C, 7 temperature values), because data over 
a wider temperature range would be required for correct model fit.

A second limitation of the Yan and Hunt model is that it is not well suited to modelling positively skewed dis-
tributions: this issue was present in one of the seven photosynthesis-temperature curves we measured, Z. muelleri  
in summer at Moreton Bay. Photosynthesis-temperature curves for seagrass are expected to have a negative skew, 
which indicates, at temperatures below Topt, a gradual increase in photosynthesis rate with temperature, and 
rapid decrease in photosynthesis rate above Topt. Most of our results were consistent with this expectation. In 
contrast, positive skew indicates, at temperatures below Topt, a sharp increase in photosynthesis with temper-
ature, and a gradual decrease in photosynthesis rate above Topt. Positive skew appeared to be expressed by our  
Z. muelleri data; as a result, seven of the 12 models fitted the Z. muelleri data better (adjusted R2 value of 0.65–66) 
than the Yan and Hunt model (adjusted R2 value of 0.55, see Supplementary Table S2). If positive skew of the 
photosynthesis-temperature curve is a species-specific characteristic of Z. muelleri, then models other than the 
Yan and Hunt model are better suited to modelling the dependence of Z. muelleri photosynthesis on temperature. 
However, for this study only one dataset for the species Z. muelleri was collected, whilst three datasets each for 
the other two species C. serrulata and H. uninervis were collected. Further measurements of Z. muelleri photo-
synthesis are therefore necessary to confirm whether the positive skew of its photosynthesis-temperature curve is 
reproducible (and therefore a species-specific trait) or not. If the photosynthesis-temperature curve of this species 
(or others) consistently does not fit well to the Yan and Hunt model, one of the other investigated models that 
easily yields biologically-meaningful parameters (i.e. the Briére-1, Briére-2, Deutsch, or van der Heide models) 
may be more appropriate.

Comparison with previous model selection approaches. In this paper we chose the best model based 
on goodness of fit and obtaining biologically-meaningful parameters (Fig. 2). This approach builds upon previous 
model selection studies which have considered both these criteria, though not in such a systematic manner. For 
example, model selection of temperature-dependent biological rates in two recent studies was based primarily on 
(1) mean Akaike weight34, and (2) adjusted R2 and AIC17, although in both studies the selected model was argued 
to be also advantageous for estimating Tmin, Topt and Tmax.

In the two aforementioned studies, the Lactin and van der Heide models were found to be the best17,34, 
although we ruled out both these models. In our study, the Lactin and van der Heide models were both in 
the bottom six of 12 models based on goodness of fit, ranked either by mean Akaike weight or mean Schwarz 
weight. For the van der Heide model, this reduced fit likely occurred because the predicted temperatures 
Tmin, Topt and Tmax of this model are not mutually independent, which places significant restrictions on the 
exact shapes of temperature-dependence that can be captured. For the Lactin model, it is not easy to obtain 
biologically-meaningful parameters because solution of analytically intractable equations is required to write 
this model in terms of Tmax. In contrast, the Yan and Hunt model has a simple algebraic form in terms of Tmax, 
and does not have interdependence of Tmin, Topt and Tmax values because it assumes Tmin =  0, thereby freeing up its 
remaining parameters to adequately capture the shape of the temperature-dependence of seagrass photosynthesis.

Conclusion
Model selection that specifically accounts for both goodness of fit and biologically-meaningful parameters is 
likely to identify a more useful model than a model selection process that considers only best fit. In particular, 
ensuring that model parameters are transferable will likely increase usage of these parameters for (1) comparison 
with experimentally-measurable quantities to provide an indication of system state, and (2) implementation in 
multiple types of models. In our case, the thermal optima and maxima identified for three tropical seagrass spe-
cies can be used as upper temperature limits to assess the vulnerability of these species to ocean warming, and can 
be implemented in future parameterisations of plant growth models that are based on carbon balance. Overall, 
widespread usage of biologically-meaningful parameters will facilitate greater connections between the work of 
modellers and ecologists, thus enriching the research of both fields for the future.

Methods
Photosynthetic rates were measured over a large temperature range for three tropical seagrass species growing 
in winter and summer at two different latitudes. For each species, season and latitude, the dependence of photo-
synthesis rate on temperature was fitted to 12 different empirical models. The best photosynthesis-temperature 
model for tropical seagrass was identified, based on goodness of fit and the ease at which biologically-meaningful 
parameters can be obtained from the model.

Study sites. The study was undertaken at two locations (hereafter called “latitudes”) on the eastern coast of 
Queensland, Australia: (1) Green Island, near Cairns, in the Great Barrier Reef (16°45′ 17.70′ ′ S, 145°58′ 22.74′ ′ E), 
and (2) Moreton Bay, near Brisbane (27°29′ 31.70′ ′ S, 153 °24′ 4.61′ ′ E). Green Island is a nearshore reef habitat, and 
has a seagrass community consisting of several tropical species35. Moreton Bay is a partially-enclosed embayment, 
with multiple seagrass species growing in a large shallow area on its eastern side called Eastern Banks36. Moreton 
Bay is approximately 1500 km south of Green Island, as shown in Fig. 4. All data used in this paper were collected 
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from: (1) the northern waters of Green Island and (2) One Mile, a site within Eastern Banks that is adjacent to the 
north-western coast of North Stradbroke Island, within Moreton Bay.

Data collection. Whole seagrass shoots were collected from Green Island and Moreton Bay. Photosynthesis 
was measured within 24 hours of collection. If photosynthesis could not be measured on the same day as collec-
tion, intact cores of shoots, rhizomes and sediment were collected and placed into submerged garden pots that 
were kept overnight within tanks onsite with re-circulated water and gas bubblers at ambient water temperature, 
and photosynthesis was measured the following morning. For comparison between seasons and latitudes, shoots 
were collected from Green Island in January 2015 (summer), and from Moreton Bay in February/March 2015 
(summer) and June 2015 (winter). For comparison between species, shoots of the seagrass species H. uninervis  
and C. serrulata were collected; in addition, shoots of the seagrass species Z. muelleri were collected from Moreton 
Bay in summer. This provided a total of seven different latitude/species/season combinations, hereafter called 
“treatments”, from which to obtain photosynthesis-temperature curves of seagrass.

Photosynthesis of seagrass leaves was measured using the O2 optode method37,38, specifically by using optical 
oxygen sensors (“optodes” PreSens, Sensor spots-Pst3) and two PreSens Oxy 4 four-channel fiber-optic oxygen 
meters that were placed within small incubation chambers. Seagrass leaves were held upright in the chamber 
to mimic natural orientation. Two arrays of four chambers were run at each time. Each optode was calibrated 
according to Collier et al.18 prior to initial measurements. Small transparent acrylic chambers (70 mL) were set 
into an array of four separate chambers to allow four parallel measures, and temperature was controlled using a 
flow-through water system connected to a water bath (Lauda, Ecoline RE 106). The temperature bath and tem-
perature loggers were calibrated against a precision NATA certified mercury thermometer. Each chamber was 
stirred with a magnetic stirrer bar. A blank chamber was included in each array of four chambers to test for blank 
production.

Dark respiration of seagrass leaves was measured from oxygen consumption in the dark, and net photosyn-
thetic rates were then measured when the same leaf was illuminated at saturating light conditions, at the same 
temperature. Net photosynthesis rates were measured at the light level of 400 μmol photons m−2 s−1, which is a 
saturating light level for all three seagrass species measured39–41. Illumination was provided by white LED lamps42 
and measured using a photosynthethically active radiation probe (MQ-200, Apogee Instruments) that was cali-
brated against a manufacturer-calibrated 2π light sensor (LiCor).

Net photosynthesis and dark respiration rates were measured at seven different temperatures, ranging from 15 
to 43 °C in winter and 17 to 43 °C in summer. Six replicates were used for each species. A minimum of 40 minutes 
was allowed after changing the temperature of the water bath to enable the temperature of the incubation cham-
bers to reach the target temperature. Seawater within the chambers was replaced prior to measurements at the two 
highest temperatures. Previous tests of the water discarded from chambers showed very small changes in chamber 
pH (mean Δ pH =  0.05) over the incubation period when using this water changing regime.

After measurements of net photosynthesis and dark respiration were completed, seagrass leaves were rinsed in 
freshwater and dried for 48 h at 60 °C, to obtain the dry leaf mass and therefore normalise net photosynthesis and 
dark respiration rates to dry leaf mass. Oxygen (O2) consumption rates were then converted to carbon (C) fixation 
rates by assuming that the amount of carbon fixed/released during photosynthesis and respiration was equal to 
the amount of O2 evolved/fixed respectively43–45. Together the conversions yielded net photosynthesis and dark 
respiration rates in units of g C g−1 DW d−1. Corresponding values of net photosynthesis and dark respiration rate 
for each replicate and temperature were subtracted to obtain the temperature-dependent gross photosynthesis 
rate, in the same units.

Model fitting and selection. To adequately capture the temperature dependence of seagrass photosynthe-
sis, we first identified suitable models that have been proposed in the literature. Four recent papers1,17,34,46 have 
compared empirical equations for the temperature dependence of biological processes. In total, these four papers 
considered 28 different models. Starting with these 28 models, we reduced the total number of models examined 
to 12, by only keeping models that satisfied the following four criteria:

1. The model provides the correct general shape of the photosynthesis-temperature curve. Specifically, the model 
predicts a rise in photosynthesis rate with temperature at low temperatures, up to an optimum Topt, and a 
decrease in photosynthesis rate at temperatures higher than Topt.

2. The model is not symmetric with respect to the optimum temperature. In other words, the model allows the 
photosynthesis rate at a temperature Δ T degrees lower than the optimum Topt, to be different to the  
photosynthesis rate at a temperature Δ T degrees higher than the optimum (i.e. the model allows that  
P(Topt −Δ T) ≠  P(Topt +  Δ T)).

3. The model has no more than 4 free parameters. This criterion reduces the chances of model overfitting.
4. The model can be written unambiguously in terms of the maximum photosynthesis rate Pmax and optimum 

temperature Topt. The model can therefore be used to identify the two parameters that characterise the 
thermal optimum.

The 12 models that satisfied these four criteria, and the biologically-meaningful parameters that can be 
obtained from them, are summarised in Table 1 and mathematically defined in Supplementary Section S1. All 12 
models were written in terms of Pmax and Topt (see Criterion 4 above); to accomplish this required some algebraic 
manipulations, described in Supplementary Section S2. The convention of this paper is to name the models after 
the first one or two authors who first suggested the model for application to temperature-dependent biological 
rates.
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The 12 models listed in Table 1 were individually fitted to the seven treatments of seagrass gross photosynthe-
sis against temperature using nonlinear regression. The regression was performed using ordinary least-squares 
fitting via the NonLinearModel.fit command in MATLAB47. To compare model fits to the data, four statistical 
metrics were calculated and compared: adjusted R-squared, refined index of agreement48, and Akaike and Schwarz 
weights49. These four metrics are indicators of model performance, and the latter two (Akaike and Schwarz 
weights) are specifically designed for comparison between different models2,46. Akaike and Schwarz weights 
were calculated from the small sample unbiased Akaike Information Criterion (AICc) and the Bayesian-Schwarz 
Information Criterion (BIC), respectively. Akaike weights were calculated from the AICc instead of the Akaike 
Information Criterion (AIC) because the number of model parameters p exceeded n/40, where n is the sample 
size, for all models and treatments in our study (p ≥  3, n =  42)2.

For model selection in this paper, the ability of the model fitting to yield biologically-meaningful parameters 
was considered of similar importance as goodness of fit. Hence, the 12 models were also evaluated by the ease at 
which biologically-meaningful parameters, particularly Topt, Tmax and Pmax, could be obtained from them. We con-
sidered prediction of the minimum temperature Tmin to be less important for model selection, because seagrasses 
are primarily threatened by ocean warming22–25.

Figure 4. Green Island and Moreton Bay study sites, off the coast of Queensland, Australia. Seagrass 
distribution (shown in green) is reproduced from McKenzie et al.50 for Green Island and Roelfsema et al.51 for 
Moreton Bay. All seagrass data for this map is publicly available in PANGAEA52,53. The map was produced using 
ArcGIS for Desktop version 10.2 (Esri 2013) (http://www.esri.com/software/arcgis/arcgis-for-desktop) and 
Adobe Illustrator CC 2015 (http://www.adobe.com/au/creativecloud.html).

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.adobe.com/au/creativecloud.html
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Finally, the shape parameter Q10 was also calculated for each model and treatment combination. Q10 is the 
factor increase in biological rate with 10 °C increase in temperature30, for temperatures below the optimum. For 
each of the 12 models fitted to the data, an exponential function of the form

= −P T P Q( ) (2)
T T

0 10
( )/10ref

was fitted to the data for temperatures less than the optimum temperature Topt using nonlinear regression47. In 
equation (2), P0 is the photosynthesis rate at the reference temperature Tref =  20 °C, following the convention of 
Baird et al.7. Because the value of Topt depends on which of the 12 models from Table 1 is fitted to the data, we 
calculated values of Q10 for each model and treatment combination. Although the exponential rise in photosyn-
thetic rate with temperature will begin to plateau at temperatures slightly less than Topt, the temperature difference 
between photosynthesis measurements at adjacent temperatures in our study was assumed to be sufficiently large 
so that the impact of this effect on calculation of Q10 could be neglected.
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