16 research outputs found

    Genetic heritage of the Balto-Slavic speaking populations: a synthesis of autosomal, mitochondrial and Y-chromosomal data

    Get PDF
    Here, we characterize genetic variation in all extant ethnic groups speaking Balto-Slavic languages by analyzing mitochondrial DNA (n = 6,876), Y-chromosomes (n = 6,079) and genome-wide SNP profiles (n = 296), within the context of other European populations. We also reassess the phylogeny of Slavic languages within the Balto-Slavic branch of Indo-European. We find that genetic distances among Balto-Slavic populations, based on autosomal and Y-chromosomal loci, show a high correlation (0.9) both with each other and with geography, but a slightly lower correlation (0.7) with mitochondrial DNA and linguistic affiliationyesBelgorod State National Research Universit

    Gene pool similarities and differences between Ukrainians and Russians of slobozhanshchina based on Y-chromosome data

    Get PDF
    Results from studying Y chromosomal polymorphisms of Russian and Ukrainian populations are presented for Slobozhanshina, which is a contemporary border region, inhabited in the 17th–18th centuries at the “Wild Field” boundary due to migrations of both the Russians from the north and Ukrainians from the west. In general, the Ukrainian and Russian populations of Slobozhanshchina are very close genetically; their set and frequency range of Y chromosome haplogroups are typical for Eastern Europe. However, a detailed analysis of highly informative Y chromosome markers showed that both nations retain the ethnic specificity of their gene pools after 3.5 centuries of coexistence in the same historical territory: the Ukrainian popula tions are similar to the rest of Ukraine, and Russian populations gravitate towards the south of European Rus sia. The persistent genetic differences may be due to the spatial characteristics of marriage migration and the predominant ethnic environmentyesBelgorod State National Research Universit

    The genetic history of admixture across inner Eurasia

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record.Data Availability. Genome-wide sequence data of two Botai individuals (BAM format) are available at the European Nucleotide Archive under the accession number PRJEB31152 (ERP113669). Eigenstrat format array genotype data of 763 present-day individuals and 1240K pulldown genotype data of two ancient Botai individuals are available at the Edmond data repository of the Max Planck Society (https://edmond.mpdl.mpg.de/imeji/collection/Aoh9c69DscnxSNjm?q=).The indigenous populations of inner Eurasia, a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra, harbor tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine, and Uzbekistan. We furthermore report additional damage-reduced genome-wide data of two previously published individuals from the Eneolithic Botai culture in Kazakhstan (~5,400 BP). We find that present-day inner Eurasian populations are structured into three distinct admixture clines stretching between various western and eastern Eurasian ancestries, mirroring geography. The Botai and more recent ancient genomes from Siberia show a decrease in contribution from so-called “ancient North Eurasian” ancestry over time, detectable only in the northern-most “forest-tundra” cline. The intermediate “steppe-forest” cline descends from the Late Bronze Age steppe ancestries, while the “southern steppe” cline further to the South shows a strong West/South Asian influence. Ancient genomes suggest a northward spread of the southern steppe cline in Central Asia during the first millennium BC. Finally, the genetic structure of Caucasus populations highlights a role of the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North Caucasus populations from the steppe.Max Planck SocietyEuropean Research Council (ERC)Russian Foundation for Basic Research (RFBR)Russian Scientific FundNational Science FoundationU.S. National Institutes of HealthAllen Discovery CenterUniversity of OstravaCzech Ministry of EducationXiamen UniversityFundamental Research Funds for the Central UniversitiesMES R

    Y-chromosome STR variation in Ukrainian populations

    No full text
    The haplotype and allele frequencies for 17 STR loci of Y-chromosome were obtained for 1151 indigenous Ukrainians from 13 regional populations representing the major territorial subdivisions of Ukraine. There were no significant inter-population differences. The genetic subdivisions within Ukraine was revealed between Polesie, western and eastern forest-steppe populations. The highest microsatellite variability was observed along the edges of Ukrainian area – in the Carpathian region, Bukovina, Sloboda Ukraine; the lowest – in Polesie. The average haplotype diversity values are higher in the steppe and forest-steppe zones, than in Polesie and the Carpathians. Forensic parameters were calculated: total haplotype diversity HD = 0,998855, match probability MP = 0.00114508, the discrimination capacity DC = 0,89400521

    Genetic heritage of the Balto-Slavic speaking populations: a synthesis of autosomal, mitochondrial and Y-chromosomal data

    No full text
    yesHere, we characterize genetic variation in all extant ethnic groups speaking Balto-Slavic languages by analyzing mitochondrial DNA (n = 6,876), Y-chromosomes (n = 6,079) and genome-wide SNP profiles (n = 296), within the context of other European populations. We also reassess the phylogeny of Slavic languages within the Balto-Slavic branch of Indo-European. We find that genetic distances among Balto-Slavic populations, based on autosomal and Y-chromosomal loci, show a high correlation (0.9) both with each other and with geography, but a slightly lower correlation (0.7) with mitochondrial DNA and linguistic affiliationBelgorod State National Research Universit

    Gene pool similarities and differences between Ukrainians and Russians of slobozhanshchina based on Y-chromosome data

    No full text
    yesResults from studying Y chromosomal polymorphisms of Russian and Ukrainian populations are presented for Slobozhanshina, which is a contemporary border region, inhabited in the 17th–18th centuries at the “Wild Field” boundary due to migrations of both the Russians from the north and Ukrainians from the west. In general, the Ukrainian and Russian populations of Slobozhanshchina are very close genetically; their set and frequency range of Y chromosome haplogroups are typical for Eastern Europe. However, a detailed analysis of highly informative Y chromosome markers showed that both nations retain the ethnic specificity of their gene pools after 3.5 centuries of coexistence in the same historical territory: the Ukrainian popula tions are similar to the rest of Ukraine, and Russian populations gravitate towards the south of European Rus sia. The persistent genetic differences may be due to the spatial characteristics of marriage migration and the predominant ethnic environmentBelgorod State National Research Universit

    A recent bottleneck of Y chromosome diversity coincides with a global change in culture

    Get PDF
    Contains fulltext : 153022.pdf (publisher's version ) (Open Access)It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males

    Characterizing the genetic history of admixture across inner Eurasia

    No full text
    The indigenous populations of inner Eurasia, a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra, harbor tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine, and Uzbekistan. We furthermore report genome-wide data of two Eneolithic individuals (~5,400 years before present) associated with the Botai culture in northern Kazakhstan. We find that inner Eurasian populations are structured into three distinct admixture clines stretching between various western and eastern Eurasian ancestries. This genetic separation is well mirrored by geography. The ancient Botai genomes suggest yet another layer of admixture in inner Eurasia that involves Mesolithic hunter-gatherers in Europe, the Upper Paleolithic southern Siberians and East Asians. Admixture modeling of ancient and modern populations suggests an overwriting of this ancient structure in the Altai-Sayan region by migrations of western steppe herders, but partial retaining of this ancient North Eurasian-related cline further to the North. Finally, the genetic structure of Caucasus populations highlights a role of the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North Caucasus populations from the steppe

    A recent bottleneck of Y chromosome diversity coincides with a global change in culture

    No full text
    © 2015 Karmin et al. It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males

    Genetic Heritage of the Balto-Slavic Speaking Populations: A Synthesis of Autosomal, Mitochondrial and Y-Chromosomal Data

    Get PDF
    The Slavic branch of the Balto-Slavic sub-family of Indo-European languages underwent rapid divergence as a result of the spatial expansion of its speakers from Central-East Europe, in early medieval times. This expansion–mainly to East Europe and the northern Balkans–resulted in the incorporation of genetic components from numerous autochthonous populations into the Slavic gene pools. Here, we characterize genetic variation in all extant ethnic groups speaking Balto-Slavic languages by analyzing mitochondrial DNA (n = 6,876), Y-chromosomes (n = 6,079) and genome-wide SNP profiles (n = 296), within the context of other European populations. We also reassess the phylogeny of Slavic languages within the Balto-Slavic branch of Indo-European. We find that genetic distances among Balto-Slavic populations, based on autosomal and Y-chromosomal loci, show a high correlation (0.9) both with each other and with geography, but a slightly lower correlation (0.7) with mitochondrial DNA and linguistic affiliation. The data suggest that genetic diversity of the present-day Slavs was predominantly shaped in situ, and we detect two different substrata: ‘central-east European’ for West and East Slavs, and ‘south-east European’ for South Slavs. A pattern of distribution of segments identical by descent between groups of East-West and South Slavs suggests shared ancestry or a modest gene flow between those two groups, which might derive from the historic spread of Slavic people
    corecore