204 research outputs found

    Preliminary Analysis of AIS Spectral Data Acquired from Semi-arid Shrub Communities in the Owens Valley, California

    Get PDF
    Spectral characteristics of semic-arid plant communities using 128 channel airborne imaging spectrometer (AIS) data acquired on October 30, 1984. Both field and AIS spectra of vegetation were relatively featureless and differed from substrate spectra primarily in albedo. Unvegetated sand dunes were examined to assess spectral variation resulting from topographic irregularity. Although shrub cover as low as 10% could be detected on relatively flat surfaces, such differences were obscured in more heterogeneous terrain. Sagebrush-covered fans which had been scarred by fire were studied to determine the effect of changes in plant density on reflectance. Despite noise in the atmospherically corrected spectra, these provide better resolution of differences in plant density than spectra which are solar-corrected only. A high negative correlation was found between reflectance and plant cover in areas which had uniform substrates and vegetation types. A lower correlation was found where vegetation and substrates were more diverse

    Vegetation impact and recovery from oil-induced stress on three ecologically Distinct Wetland Sites in the Gulf of Mexico

    Get PDF
    April 20, 2010 marked the start of the British Petroleum Deepwater Horizon oil spill, the largest marine oil spill in US history, which contaminated coastal wetland ecosystems across the northern Gulf of Mexico. We used hyperspectral data from 2010 and 2011 to compare the impact of oil contamination and recovery of coastal wetland vegetation across three ecologically diverse sites: Barataria Bay (saltmarsh), East Bird's Foot (intermediate/freshwater marsh), and Chandeleur Islands (mangrove-cordgrass barrier islands). Oil impact was measured by comparing wetland pixels along oiled and oil-free shorelines using various spectral indices. We show that the Chandeleur Islands were the most vulnerable to oiling, Barataria Bay had a small but widespread and significant impact, and East Bird's Foot had negligible impact. A year later, the Chandeleur Islands showed the strongest signs of recovery, Barataria Bay had a moderate recovery, and East Bird's Foot had only a slight increase in vegetation. Our results indicate that the recovery was at least partially related to the magnitude of the impact such that greater recovery occurred at sites that had greater impact

    Detection of interannual vegetation responses to climatic variability using AVIRIS data in a coastal savanna in California

    Get PDF
    11 pages, 10 figures.Ecosystem responses to interannual weather variability are large and superimposed over any long-term directional climatic responses making it difficult to assign causal relationships to vegetation change. Better understanding of ecosystem responses to interannual climatic variability is crucial to predicting long-term functioning and stability. Hyperspectral data have the potential to detect ecosystem responses that are undetected by broadband sensors and can be used to scale to coarser resolution global mapping sensors, e.g., advanced very high resolution radiometer (AVHRR) and MODIS. This research focused on detecting vegetation responses to interannual climate using the airborne visible-infrared imaging spectrometer (AVIRIS) data over a natural savanna in the Central Coast Range in California. Results of linear spectral mixture analysis and assessment of the model errors were compared for two AVIRIS images acquired in spring of a dry and a wet year. The results show that mean unmixed fractions for these vegetation types were not significantly different between years due to the high spatial variability within the landscape. However, significant community differences were found between years on a pixel basis, underlying the importance of site-specific analysis. Multitemporal hyperspectral coverage is necessary to understand vegetation dynamics.This work was supported in part by Foundation Barrie de la Maza, Spain, and NASA EOS Program Grant NAS5-31359.Peer reviewe

    HIAPER: The next generation NSF/NCAR research aircraft

    Get PDF

    Hotel business advertising specificity and its psychological examination procedure

    Get PDF
    © 2015, Econjournals. All rights reserved. The article substantiates the need of the preliminary psychological examination of advertising. An overview and analysis of contemporary conceptual lines of the hotel advertising are given in the article. Features of advertising messages are shown on the example of some hotels. The effects arising from the improper construction of the advertising composition are given. Conclusions, revealing features of advertising strategies in the hotel business, in contrast to advertising in the commodity market are made

    Prospect redux

    Get PDF
    The remote estimation of leaf biochemical content from spaceborne platforms has been the subject of many studies aimed at better understanding of terrestrial ecosystem functioning. The major ecological processes involved in exchange of matter and energy, like photosynthesis, primary production, evaportranspiration, respiration, and decomposition can be related to plant properties e.g., chlorophyll, water, protein, cellulose and lignin contents. As leaves represent the most important plant surfaces interacting with solar energy, a top priority has been to relate optical properties to biochemical constituents. Two different approaches have been considered: first, statistical correlations between the leaf reflectance (or transmittance) and biochemical content, and second, physically based models of leaf scattering and absorption developed using the laws of optics. Recently reviewed by Verdebout et al., the development of models of leaf optical properties has resulted in better understanding of the interaction of light with plant leaves. Present radiative transfer models mainly use chlorophyll and/or water contents as input parameters to calculate leaf reflectance. Inversion of these models allows to retrieve these constituents from spectrophotometric measurements. Conel et al. recently proposed a two-stream Kubelka-Munk model to analyze the influence of protein, cellulose, lignin, and starch on leaf reflectance, but in fact, the estimation of leaf biochemistry from remote sensing is still an open question. In order to clarify it, a laboratory experiment associating visible/infrared spectra of plan leaves both with physical measurements and biochemical analyses was conducted at the Joint Research Center during the summer of 1993. This unique data set has been used to upgrade the PROSPECT model, by including leaf biochemistry

    Pareidolia illusions in advertising with "Hidden" symbolic images

    Get PDF
    The article covers the problem of using "hidden" symbols that are actually imperceptible without purposeful very careful examination of advertising picture. On the other hand "hidden" symbols in advertising are highly effective as a psychological effect on consumer. The authors discuss specifics of psychological effect of "hidden" symbols in advertising, analyze some symbols that may be found in today advertising and demonstrate specifics of perception dependence of sex. The authors have came to conclusion that hidden symbols in advertising pictures are not always carefully selected and do not reflect initial intention. Besides "hidden" symbols often contradict with advertising idea

    Using foreground/background analysis to determine leaf and canopy chemistry

    Get PDF
    Spectral Mixture Analysis (SMA) has become a well established procedure for analyzing imaging spectrometry data, however, the technique is relatively insensitive to minor sources of spectral variation (e.g., discriminating stressed from unstressed vegetation and variations in canopy chemistry). Other statistical approaches have been tried e.g., stepwise multiple linear regression analysis to predict canopy chemistry. Grossman et al. reported that SMLR is sensitive to measurement error and that the prediction of minor chemical components are not independent of patterns observed in more dominant spectral components like water. Further, they observed that the relationships were strongly dependent on the mode of expressing reflectance (R, -log R) and whether chemistry was expressed on a weight (g/g) or are basis (g/sq m). Thus, alternative multivariate techniques need to be examined. Smith et al. reported a revised SMA that they termed Foreground/Background Analysis (FBA) that permits directing the analysis along any axis of variance by identifying vectors through the n-dimensional spectral volume orthonormal to each other. Here, we report an application of the FBA technique for the detection of canopy chemistry using a modified form of the analysis

    A review of the contributions of Alexander F.H. Goetz to imaging spectroscopy

    Full text link
    All aspects of the science and engineering of imaging spectrometry have been advanced by the work of Dr. Alexander F.H. Goetz over the past 30 years. Dr. Goetz’s pioneering efforts were among the first to realize that it was feasible to obtain laboratory like spectra from space that would quantify earth materials based on biogeochemistry. He has made fundamental contributions to developing high spectral resolution field spectrometers and airborne imaging spectrometers, and to the image processing software and atmospheric correction software needed to analyze the data. These parallel developments in core technologies have made imaging spectroscopy available to a wide range of users of varying user expertise and disciplines, thus enabling the current state of rapid advances in the use of this data
    corecore