
A recently developed research aircraft will usher in 
a new era of environmental research opportunities for 
investigators wanting to study the Earth’s atmosphere and 
surface on a worldwide basis.
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HIAPER: THE NEXT GENERATION 
NSF/NCAR RESEARCH AIRCRAFT

HIAPER in flight during the Terrain-induced Rotor Experiment (T-REX), the first large-scale field 
program undertaken with the new NSF/NCAR aircraft. ©UCAR, Photo by Chad Slattery.
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I
 n late 2005, a new research platform began support of environmental 

 research. The High-Performance Instrumented Airborne Platform for 

 Environmental Research (HIAPER) represents the culmination of over 

two decades of effort by university investigators and personnel at the National  

Science Foundation (NSF) and the National Center for Atmospheric Research 

(NCAR) to obtain the funding needed for the aircraft acquisition, �
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and to work with members 

of the scientific community 

to define the performance 

attributes and desired con-

figuration of this new, state-

of-the-art platform. It is the 

most sophisticated aircraft 

ever operated by NCAR, and 

its combination of long-range 

(~11,000 km), high-altitude 

(~15 km), and endurance 

(~10 h) performance charac-

teristics will enable investi-

gators to conduct vital new 

research studies in critical 

regions of the earth's atmo-

sphere and over remote sec-

tions of the planet's surface.

Beginning in the 1980s, 

NSF, NCAR, and community-

based science planning groups 

repeatedly expressed a strong scientific need for a 

midsized jet aircraft to be used to conduct research 

into environmental problems that could not be 

efficiently studied using other platforms and instru-

ments (Hildebrand and McCarthy 1983; Johnson 

and Cooper 1989; Cooper et al. 1989). In the late 

1990s, the opportunity to seek the necessary funds 

to acquire a midsized jet presented itself in the form 

of the Major Research Equipment and Facilities 

Construction (MREFC) program at NSF. In 1998, 

NCAR submitted a proposal for HIAPER to the 

National Science Board (NSB), which approved the 

continuation of the planning effort. The conduct of 

a community survey and workshop at NCAR in 1999 

led to the definition of the following priorities for the 

new research jet (in descending order of importance): 

altitude, endurance, range, payload, and floor space. 

These results drew a clear picture of the need for a 

midsized jet that would truly allow investigators to 

go “higher, farther, faster” in their studies of the 

global environment.
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FIG. 1. HIAPER, a modified Gulfstream V business jet. ©UCAR, Photo by 
Carlye Calvin.

FIG. 2. Nominal ceiling altitudes of the HIAPER and 
NASA high-altitude aircraft operating for long dis-
tances with substantial payloads. The ceiling altitude 
range for HIAPER reflects payload weight. Note that 
the horizontal axis is cosine weighted to yield a display 
of equal areas on the globe. Data courtesy of W. Randel 
and F. Wu (NCAR). Figure courtesy of David Fahey 
(NOAA).
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During 2000 and 2001, initial funds were awarded 

to HIAPER from the MREFC program to begin the 

acquisition process. The appropriation of additional 

funds in fiscal year 2002 by Congress cleared the 

way for the University Corporation for Atmospheric 

Research (UCAR) to complete the proposal solicita-

tion, review, and award process for the new aircraft, 

and in December 2001, UCAR awarded a contract to 

Gulfstream Aerospace Corporation for production of 

the basic aircraft, a Gulfstream V (GV) business jet. 

After rolling off of the Gulfstream production line in 

Savannah, Georgia, in June 2002, the green aircraft 

(so-called because of the color of the fuselage prior to 

final painting) was transferred to Greenville, South 

Carolina, for modification by Lockheed Martin. The 

outfitting of the GV with the requisite modifications 

(optical view ports, aperture plates, fuselage hard 

points, forward fuselage pads, and under-wing hard 

points) and a research power system was completed 

in the fall of 2004, and the aircraft was then returned 

to Savannah for interior and exterior completion 

by the Garrett Aviation Consulting Group and the 

Savannah Air Center. The total price tag for the 

HIAPER program was $81.5 million, including $10 

million for the development and integration of critical 

infrastructure systems [e.g., a data acquisition system 

and data display software, satellite communication 

(SATCOM) systems, etc.], and $12.5 million for the 

development of new instrumentation. For more infor-

mation regarding the HIAPER project in general, visit 

the HIAPER Web site at www.hiaper.ucar.edu. This 

article focuses on what this considerable investment 

of financial and personnel resources has yielded in 

terms of a state-of-the-art research aircraft (Fig. 1).

AIRCRAFT PERFORMANCE CHARACTER-
ISTICS. With the ability to carry payloads as high as 

15,500 m (51,000 ft) and range capabilities exceeding 

11,100 km, the GV will make possible studies of the 

upper troposphere, the tropopause region in all but the 

deep Tropics, and the lower 

stratosphere at midlatitudes. 

While other platforms in the 

U.S. research aviation f leet 

[e.g. the National Aeronau-

tics and Space Administra-

tion (NASA) DC-8, WB-57F, 

and ER-2s and the National 

Oceanic and Atmospheric 

Administrat ion (NOAA) 

Gulfstream IV] provide some 

research capabilities in these 

regions, none of these aircraft 

possess the combination of altitude, range, and pay-

load possibilities afforded by HIAPER (Figs. 2 and 3; 

Table 1). Figure 4 shows a comparison of performance 

attributes of HIAPER and the NSF/NCAR C-130. For 

the maximum payload and maximum fuel scenarios 

depicted, the altitude and range capabilities of the 

GV are roughly double those of the C-130. (It should 

be noted, however, that the maximum payload that 

can be flown on the C-130 is nearly 3 times that of 

the GV.) It must be acknowledged that the upper-

FIG. 3. A comparison of the maximum ranges for 
HIAPER (black circle), the NSF/NCAR C-130 (red 
circle), and the NASA ER-2 (blue circle). The circles 
shown represent the maximum distance to which 
each aircraft can fly from a base at Jefferson County 
Airport in Broomfield, CO (represented by the star), 
and return to the same base. The ranges shown cor-
respond to flight of each aircraft at optimum altitude 
for ferry (12,500 m for HIAPER, 6100 m for the C-130, 
and 19,800 m for the ER-2) and with the maximum 
possible payload deployed on each aircraft.

TABLE 1. Key Hiaper performance attributes.

Maximum operating altitude 15,500 m (51,000 ft)

Maximum scientific payload 3540 kg (7800 lb)

Maximum scientific payload at maximum range (11,100 km) 2490 kg (5500 lb)

Loiter (research) time at 10,668 m (35,000 ft) with payload 
of 2990 kg (6600 lb)

13.4 h

Loiter (research) time at 15,200 m (50,000 ft) and 15,500 m 
(51,000 ft) with payload of 1180 kg (2600 lb)

3.1 h

True airspeed at 9140 m (30,000 ft) 195 m s–1

True airspeed at 12,200 m (40,000 ft) and above 227 m s–1
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altitude limit of HIAPER 

will not permit scientists to 

collect in situ data in some 

of the higher regions of the 

tropical tropopause (see 

Fig. 2). However, modifica-

tions made to the GV (spe-

cifically, the installation of 

large-diameter zenith view 

ports) will make it possible 

for investigators to deploy 

uplooking remote sensing 

instruments on the aircraft 

for the purpose of studying 

these upper-atmospheric 

regions.

The successful execu-

tion of various mission 

profiles and research ob-

jectives with the GV will require 

the recognition of, and adherence 

to, specific aircraft performance at-

tributes on the part of the scientific 

community. For example, the GV 

will be capable of deploying pay-

loads weighing up to almost 3630 kg 

(8000 lb). However, it will not be 

possible to carry the largest possible 

payload to the maximum range or 

altitude of the aircraft. Specifically, 

for each 45 kg of payload weight, 

approximately 39 km of range and 

roughly 9 m of altitude must be 

subtracted. Similarly, drag counts 

(i.e., the penalty resulting from 

FIG. 4. Capabilities of HIAPER as compared to the NSF/NCAR C-130. Data 
shown for the performance of HIAPER correspond to 15 drag counts applied 
to the GV airframe and the inclusion of a 1490 kg (3280 lb) fuel reserve [suf-
ficient for landing at an alternate site 370 km away with 680 kg (1500 lb) of 
fuel in reserve]. Figure courtesy of Mark Lord (NCAR).

FIG. 5. (a) Range versus altitude and (b) 
endurance versus altitude capabilities 
of HIAPER for three different aircraft 
takeoff weights. Blue symbols corre-
spond to a takeoff weight of 41,050 kg 
(90,500 lb; maximum takeoff weight 
of the GV), the green symbol a takeoff 
weight of 33,475 kg (73,800 lb), and the 
red symbol a takeoff weight of 25,492 
kg (56,200 lb). For all cases shown, 
the takeoff weight includes a research 
payload of 1590 kg (3500 lb) and 726 kg 
(1600 lb) of fuel reserves. Additionally, 
the data shown are for scenarios in 
which 15 drag counts are applied to the 
GV airframe and the aircraft takes off 
and flies directly to the altitude value 
shown in the graphs.
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aerodynamic forces on the aircraft) applied to the GV 

airframe (in the form of wing pods, inlets, or other 

externally mounted equipment) result in range and 

altitude degradation for the aircraft: 1 drag count 

(roughly equivalent to one small wing pod) applied to 

the airframe results in a loss of approximately 39 km 

in range and approximately 20 m in altitude.

Such constraints need not, however, lead to sig-

nificant sacrifices in capability. Indeed, within the 

payload envelope that can be supported by HIAPER, 

investigators will be able to perform long-range 

missions in critical levels of the atmosphere and 

over significant portions of the Earth’s surface. As 

an example, for a research payload of slightly over 

1580 kg (roughly 3480 lb) and an associated drag 

count of 15, it will be possible to fly for over 14 h for 

a range exceeding 6000 km at altitudes of between 

approximately 3000 and 12,000 m (Fig. 5). Payload 

configuration and GV flight planning will need to 

be carefully integrated in order for investigators 

to achieve their research objectives with HIAPER. 

NCAR personnel intend to work closely with scien-

tists throughout the planning and execution phases of 

GV projects in order to ensure that optimal payloads 

and mission profiles are designed that will together 

yield the greatest possibility for mission success.

BUILDING HIAPER FROM THE GROUND 
UP: FROM GREEN AIRCRAFT TO RE-
SEARCH-READY PLATFORM.  Air frame 
modif ications. Modifications made to prepare the 

HIAPER airframe for research (Table 2) are intended 

to provide environmental scientists with a number of 

possibilities for the deployment of instrumentation 

on the aircraft (Fig. 6). Wing pods and other sensors 

(e.g., cloud physics or aerosol probes) can be mounted 

on three hard points under each wing. The three 

large-diameter (52.1 cm, or 20.5 in) optical view ports 

(one up- and two downlooking) provide investigators 

with unprecedented opportunities for the deployment 

of large-aperture viewing and remote sensing equip-

ment. Numerous aperture plates and fuselage hard 

points located on the upper and lower fuselage have 

been designed for the installation of inlets, antennas, 

and other small instruments per the requirements of 

individual projects.

TABLE 2. Modifications made to HIAPER. More detailed information is available online in the NSF/NCAR 
GV Investigator’s Handbook (www.hiaper.ucar.edu/handbook).

Modification (quantity 
given in parentheses)

Location General description Intended usage

Aperture pads/plates (8) Top (6) and bottom (2) of 
fuselage

Each plate/pad 25.4 cm (10 in) 
long by 17.8 cm (7 in) wide

Sampling inlets and small 
sensors

Fuselage mounts (8) Top (4) and bottom (4) of 
fuselage; 6 of the mounts 
installed at various locations on 
aircraft centerline, and 1 each 
of the upper and lower mounts 
installed off of centerline

Each mount 10.8 cm (4.25 in) 
long by 7.6 cm (3 in) wide with a 
4.4-cm (1.75 in) diameter hole in 
the center

Small sampling inlets, 
antennas, bulkhead feed-
through connectors, or lugs 
for securing external fairings

Forward fuselage pads (6) 2 beneath GV windscreen and 
2 on either side of aircraft 
radome

Each pad a mounting plate 
12.1 cm (4.75 in) by 11.4 cm 
(4.5 in) with a 5.1-cm (2 in) 
diameter hole in the center of 
the pad to allow for mounting/
internal clearance of a cylinder 
5.1 cm (2 in) in diameter and 
10.2 cm (4 in) in length

NCAR personnel using pads 
for the installation of state 
parameter (e.g., temperature 
and dewpoint) sensors

Optical view ports (3) Top (1) and bottom (2) of 
fuselage on aircraft centerline; 
forward-most downlooking 
and uplooking ports coaligned 
vertically and also overlap with 
forward-most window on each 
side of the aircraft

Each view port 52.1 cm (20.5 in) 
in diameter; aft down look-
ing port structure capable of 
supporting load associated with 
mounting of external equipment

Remote sensing 
instrumentation and 
imaging devices

Wing hard points (6) Wing underside (3 each wing) Each hard point capable of sup-
porting a maximum static load 
of 680 kg (1500 lb)

Wing pods and other sensors 
(cloud and aerosol probes, 
etc.)
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Critical in determining the exact locations for 

the fuselage and wing modifications to be made to 

the GV was a series of airflow studies performed by 

Gulfstream personnel that utilized computational 

f luid dynamics (CFD) numerical models. These 

studies yielded maps of airf low streamlines and 

velocity vectors and magnitudes over the surface of 

the GV body and wings. Additionally, Gulfstream 

personnel conducted particle flow modeling studies 

for the HIAPER project that produced data regarding 

particle concentration factors, ratios, and accelera-

tions along trajectories for both the fuselage and wing 

surfaces. NCAR staff and members of the scientific 

community performed a detailed review and analysis 

of the air and particle flow data to arrive at locations 

for the wing hard points and fuselage aperture plates 

and hard points that were optimal for particle and gas 

sampling. The flow-modeling data sets generated by 

Gulfstream will prove highly beneficial to investiga-

tors wishing to design and mount inlets and sensors 

at specific locations on the GV.

The design and configuration of HIAPER’s re-

search power system enables investigators to have 

easy access to several types of power. A number of sig-

nal wiring options [analog, fiber optics, coax (video), 

and twisted pair (serial) cabling] are also provided in 

the GV to allow for easier integration of instrumenta-

tion. NCAR is, however, encouraging investigators 

to employ data digitization at the source instrument 

wherever possible so that the inherent noise immu-

nity, error correction, and high-speed capabilities 

of digital networking can be fully exploited on the 

aircraft. Several networks are available throughout 

the GV to allow for separate data collection, display, 

and distribution functions.

Readers interested in obtaining more detailed 

information about the research configuration and 

system capabilities of the GV are encouraged to 

consult the NSF/NCAR GV Investigator’s Handbook 

online at www.hiaper.ucar.edu/handbook.

Infrastructure systems. Following delivery of the modi-

fied GV to UCAR in March 2005, NCAR personnel 

assumed responsibility for the integration and testing 

of essential infrastructure systems on the aircraft. Brief 

overviews of critical systems that have been installed 

on HIAPER are provided below. (Further details about 

the HIAPER infrastructure systems are available on-

line at www.hiaper.ucar.edu/specs.html.)

• Data acquisition system: The new GV data system 

relies on distributed data sampling via small mod-

ules located in the aircraft nose, cabin, baggage 

compartment, and wing pods, as needed. The 

FIG. 6. Locations of modifications on the (a) upper and 
(b) lower fuselage and (c) underneath the wings of the 
GV. In views (a) and (b) of the fuselage, optical view 
ports are shown in light blue, aperture pads and plates 
in green and red, fuselage mounts in dark blue, and 
forward fuselage pads as light grey circles. In view (c), 
notional wing stores are shown mounted at each wing 
hard point. Drawings courtesy of Lockheed Martin [(a), 
(b)] and Gulfstream Aerospace Corporation [(c)].
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usage of new high-speed, low-power processor 

boards in each data-sampling module (DSM) 

allows for efficient sampling and processing of 

collected GV data products throughout the full 

environmental regime in which the aircraft can 

operate. Access to, and recording of, outputs from 

the aircraft inertial navigation system (INS), global 

positioning system (GPS), and air data computer 

(ADC) are also provided via the GV data system.

• Data display and access: Current and planned ca-

pabilities of the onboard software utilities include 

the provision of real-time data displays, a System 

Query Language (SQL) database for the storage 

of low-rate (1 sample per second) data products, 

real-time data quality checking to provide for the 

f lagging of bad data values, real-time Internet 

communications and data access both in f light 

and remotely from the ground, distribution and 

recording of imagery from the X-band weather 

avoidance radar mounted in the GV nose, and 

digital video camera display/image storage.

• Intercommunication system (ICS): The installed 

system provides eight stations in the cabin and 

one in the baggage compartment. Cabin stations 

provide users with the capability to talk not only to 

each other but also to the cockpit crew and outside 

of the GV using either the SATCOM systems or 

one of the VHF radios.

• State parameter and air motion sensing systems: For 

every mission, HIAPER is outfitted with a radome 

gust probe (three-dimensional winds) system, a 

research pitot–static system, and ambient pressure, 

temperature, and dewpoint sensors.

• Cabin equipment racks: The basic equipment rack 

designed and built by NCAR provides a standard 

48.3-cm (19 in.) rack mount interface for instru-

mentation and equipment. Each rack has dimen-

sions of 56 cm wide, 67 cm deep, and 123 cm 

tall and accommodates a maximum capacity of 

154 kg of equipment with a center of gravity (CG) 

approximately 74 cm above the floor attachment 

plane. Ceiling attachment points have also been 

installed in the aircraft to which racks can be 

secured in order to compensate for high-rack-

overturning moments.

• SATCOM systems: Both Inmarsat and Iridium 

SATCOM systems have been installed on the GV. 

This combination of installed equipment provides 

investigators with nearly global coverage for voice 

and fax communications and data transmission, 

and the Inmarsat SATCOM system makes pos-

sible the transfer of data products to and from the 

aircraft at speeds of up to 128 kb s–1.

DEVELOPMENT OF THE NEXT GENERA-
TION OF AIRBORNE INSTRUMENTATION. 
The ability to fully capitalize on the research potential 

afforded by the GV requires that investigators adapt 

their desired payloads to the performance capabili-

ties of the aircraft. Smaller, lighter, power-efficient, 

and perhaps autonomous (i.e., no in-flight operator 

required) sensors are becoming the rule rather than 

the exception and will enable GV scientists to as-

semble comprehensive payloads that provide all of the 

critical environmental measurements needed during 

proposed research missions. In order to facilitate the 

development of an initial suite of dedicated sensors for 

the aircraft, $12.5 million of the total HIAPER project 

budget was set aside by NSF for the construction of GV 

instrumentation. NCAR and NSF turned to members 

of the environmental sciences community for input, 

guidance, and expertise during the process of deter-

mining how best to allocate and award these funds.

During a November 2002 workshop held at NCAR 

(more information available online at www.hiaper.
ucar.edu/archive/02workshop/index.html), priorities 

for HIAPER environmental measurement needs were 

outlined by international representatives of universi-

ties, government laboratories, and private industry. 

Following the workshop, members of the HIAPER in-

strumentation subgroups and the HIAPER Advisory 

Committee (HAC) worked together to assemble a 

final document summarizing measurement priorities 

for the GV. This document was used by NSF to craft 

the solicitation for proposals for HIAPER instru-

mentation development. In the summary document 

released by the HAC (titled “HIAPER Instrumenta-

tion Priorities: A Report to the NSF from the HIAPER 

Advisory Committee” and available online at www.
hiaper.ucar.edu/hac.html), each measurement was 

categorized as being standard (available on all GV 

f lights), routine (available upon request), or re-

search (innovative instrumentation provided on an 

as-needed basis and typically requiring a dedicated 

investigator for operation and support).

In August 2004, following the conduct of a formal 

instrumentation proposal solicitation and review pro-

cess by NSF, NCAR and NSF announced the successful 

proposals. Instrument development awards were made 

to 14 principal investigators (PIs), and Table 3 provides 

information on the sensors selected, the PIs, and the 

PI institutions. Work to design and build these 14 new 

GV instruments is now well underway, and delivery 

of the sensors to UCAR/NCAR will take place from 

2006 to 2009. Each of the instruments developed using 

HIAPER funds will be owned by UCAR and will be 

made available for priority usage on the GV.
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Additional critical instrumentation needs for 

HIAPER are also being met using some of the 

program’s infrastructure funds. For example, a 

fuselage-mounted dropsonde deployment system 

and basic trace gas and particle-sampling inlets for 

the GV were developed by NCAR personnel using 

TABLE 3. The NSF HIAPER instrumentation development awards.

Instrument Principal investigator Description

Small ice detector (SID) probes A. Heymsfield (UCAR/NCAR)

Particle light scattering instrument for measuring 
size distributions of particles in the 1–70-μm size 
range and for discriminating between ice crystals 
and supercooled water droplets in mixed phase 
clouds.

HIAPER Atmospheric Radiation 
Package (HARP)

R. Shetter (UCAR/NCAR)
Spectrally resolved actinic flux measurements 
and spectroradiometric actinic flux and irradiance 
measurements.

Fast ozone instrument T. Campos (UCAR/NCAR)
Quantification of ozone mixing ratios at 5 Hz using 
the method of chemiluminescent reaction of ozone 
with nitric oxide.

Trace Organic Gas Analyzer 
(TOGA)

E. Apel (UCAR/NCAR)
In situ measurements of oxygenated volatile organic 
compounds (OVOCs), nonmethane hydrocarbons 
(NMHCs), and halocarbons.

HIAPER Advanced Whole Air 
Sampler (AWAS)

E. Atlas (University of Miami)
Collection of ambient air samples autonomously for 
subsequent analysis of trace gas chemical and/or 
isotopic composition.

Quantum cascade laser 
spectrometer for HIAPER

S. Wofsy (Harvard University)
Concentration data versus time for CO2, CH4, and 
CO (N2O optional).

Autonomous airborne ozone 
photometer for the HIAPER aircraft

T. Rawlins (PSI, Inc.)
Measurements of ozone mixing ratios versus time at 
a data rate of 1 Hz.

High spectral resolution lidar
E. Eloranta (University of 
Wisconsin—Madison)

Calibrated vertical cross sections of cloud and 
aerosol optical depth, backscatter cross section, and 
depolarization.

GPS multistatic and occultation 
instrument for HIAPER

J. Garrison (Purdue University)
Measurements of water vapor distribution in the 
troposphere, ocean surface roughness, and soil 
moisture.

Vertical Cavity Surface Emitting 
Laser (VCSEL) Hygrometer

M. Zondlo (Southwest Sciences)
Measurements of water vapor concentration at a 
minimum frequency of 25 Hz over the entire range 
of the troposphere and lower stratosphere.

Time-of-Flight Aerosol Mass 
Spectrometer (ToF-AMS)

J. Jimenez (University of Colorado 
at Boulder)

Measurements of total PM1 mass concentrations 
for nonrefractory (NR) species, size-resolved 
PM1 composition for NR species, single particle 
composition during selected portions of a flight, 
light scattering signal intensity for particles above 
~250 nm correlated with mass spectral signal, and 
surrogate nonsphericity.

Microwave Temperature Profiler 
(MTP)

M. J. Mahoney (JPL/Caltech)

Measurements of brightness temperature at three 
frequencies between 55.5 and 58.8 GHz to be used 
to retrieve a temperature profile about the aircraft 
flight altitude.

Chemical Ionization Mass 
Spectrometer (CIMS)

G. Huey (Georgia Institute of 
Technology)

Measurements of nitric acid, pernitric acid, and 
sulfur dioxide in standard CIMS (negative ion) mode, 
and measurements of organics such as methanol, 
acetaldehyde, acetonitrile, and acetone in CIMS 
positive ion mode.

2D-S (Stereo) and Cloud Particle 
Imager (CPI) Probe

P. Lawson (SPEC, Inc.)
2D-S portion of probe to provide two different 
(orthogonal) views of particles. CPI portion to 
provide eight-bit (gray level) images of particles.
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some of these funds and are now available for use 

on the aircraft.

THE ROLE OF HIAPER IN ADDRESSING 
CRITICAL ENVIRONMENTAL ISSUES. An 

improved understanding of the global environment 

will be an important driver in decision-making 

processes that pertain to matters of environmental 

protection and economic sustainability. Areas of 

scientific inquiry that are of importance to society 

include 1) obtaining a better understanding of—and 

ability to predict—weather systems for the protec-

tion of life and property; 2) better understanding 

the dynamics of the Earth–climate system, including 

energy, water, and carbon cycles and their roles in 

climate forcing; 3) arriving at improved predictions 

of environmental change through an improved un-

derstanding of the production, evolution, transport, 

and radiative properties of trace chemical species, 

aerosols, and cloud particles, and the interactions 

and feedbacks of energy between the atmosphere 

and underlying oceans, land surface, and sea ice; and 

4) gaining an improved understanding of exchanges 

between the tropospheric and stratospheric regions 

of the atmosphere, including the role of organized 

convective systems. HIAPER is a unique platform 

that will enable scientists to address these problems, 

and the research contributions that will be possible 

using this aircraft can be summarized in the context 

of expected contributions to weather and water cycle 

research, atmospheric chemistry and climate system 

forcing, and the monitoring of biosphere structure 

and productivity.

Weather and water cycle research. Recent winter flood-

ing events on the U.S. west coast have led to loss of 

life and extensive property damage from debris flow 

and flash flooding. These events underscore the need 

for better medium-range precipitation forecasting 

(up to 5 days) from global-scale models, especially 

quantitative precipitation forecasts of extratropical 

cyclones and landfalling fronts and squall lines. Im-

proved short-term numerical model forecasts require 

an improved understanding of the physics of these 

storm systems, including frontogenesis, frontolysis, 

and storm structure, and a better understanding 

of storm momentum, heat, and moisture transport 

mechanisms. Observations of these storm systems, 

particularly days before landfall, require the utiliza-

tion of an aircraft with HIAPER’s capabilities, that 

is, long-range flight characteristics, the capacity to 

carry modern in situ and remote sensors to a variety 

of altitudes, and high air speeds (relative to the flight 

speeds of existing turboprop platforms) necessary to 

make mesoscale observations in a synoptic, or near-

simultaneous, time frame.

Our limited understanding of the fundamental 

cloud processes involved in atmospheric precipita-

tion formation impedes our progress in advancing 

resolvable-scale cumulus processes in global weather 

forecast models (Chen and Avissar 1994). The genera-

tion and evolution of upper-tropospheric potential 

vorticity anomalies play a strong role in the formation 

and evolution of large-scale weather systems. Obser-

vations to be made with HIAPER will enable research 

to be conducted on tropopause folds, stratospheric 

intrusions, dry-slot formation in midlatitude storm 

systems, and a wide range of interacting and related 

gravity wave processes. Such observations require 

that measurements be made over large (1000 km) 

scales and at altitudes above the tropopause at mid-

latitudes. When equipped with suitable cloud physics 

sensors and remote sensing devices for the detection 

of in-cloud and clear-air motions, HIAPER will 

enable investigators to obtain critical observations 

needed to better understand atmospheric dynamics 

and the water cycle and to better parameterize these 

processes in global weather prediction models.

Improved measurements of global water vapor re-

quire a mix of satellite sensors, aircraft observations, 

and ground-based measurements. An aircraft like 

the GV will be able to provide accurate in situ valida-

tion datasets for space- and ground-based systems. 

New lidar water vapor observing systems (still to be 

developed) that can be deployed on HIAPER will 

allow for the synoptic-scale coverage of water vapor 

measurements over land or ocean surfaces, as well 

as the collection of high-resolution profiles covering 

full daytime or nighttime cycles and full tropospheric 

water vapor profiles. Such measurements will be es-

sential for validating satellite remote sensors and, 

subsequently, for improving global model forecasts 

of precipitation (Lau et al. 1996).

Atmospheric chemistry and climate forcing. The discov-

ery of key chemical, photochemical, and microphysi-

cal processes in the atmosphere has often resulted 

from the analysis of data gathered during airborne 

campaigns. Large instrumented payloads providing 

simultaneous measurements of several compounds 

and physical parameters in different atmospheric 

environments have been used to characterize key 

chemical or microphysical transformations occurring 

within specific air parcels.

After two decades during which the scientific 

community has “taken the Earth apart” to study, 
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for example, individual chemical and microphysical 

processes in the atmosphere, it appears important 

today to “put the Earth back together” and analyze 

its complex functioning in order to better predict 

its evolution. Thus, atmospheric research is in-

creasingly defined by a systems approach, in which 

atmospheric processes are investigated as part of an 

interactive system that includes physical, chemical, 

biological, and human interactions between the 

atmosphere, ocean, and continental biosphere. An 

aircraft with the capabilities of HIAPER will be an 

exceptionally important tool for addressing im-

portant Earth system issues in which atmospheric 

chemistry plays an important role. The GV will 

enable investigators to collect observations that 

cannot be obtained using other types of platforms 

(including spacecraft).

Among the important issues on the agenda of the 

scientific community are complex questions related 

to chemistry–climate interactions, the oxidizing 

power of the atmosphere, and air quality and chemi-

cal weather (Brasseur et al. 2003). Issues that are 

key to understanding the fate of the Earth system 

include the perturbations in the carbon and nitro-

gen cycles, the direct and indirect effects of aerosols 

on climate, changes in the global stratospheric and 

tropospheric budgets of ozone, atmospheric radicals, 

hydrocarbons, and halogenated compounds, and the 

mechanisms that control global and regional air pol-

lution, including surface emissions and deposition 

as well as long-range transport. In the coming years, 

scientists will address chemical aspects of systemic is-

sues, including spatial patterns of climate forcing, the 

oxidizing power of the atmosphere, ozone effects on 

climate, the formation of organic aerosols, and aero-

sol radiative and hydrologic impacts. Some examples 

of the challenging questions needing to be addressed 

fall into the following broad categories.

INTERACTIONS BETWEEN DYNAMICS, CHEMISTRY, AND RADIA-
TION IN THE UPPER TROPOSPHERE–LOWER STRATOSPHERE. Ra-

diative forcing in the climate system depends strongly 

on the concentration of radiatively important com-

pounds in the upper troposphere and lower strato-

sphere, including greenhouse gases, ozone, and aero-

sols. The region close to the tropopause, which can 

be reached by high-altitude aircraft such as HIAPER, 

exhibits a complex interplay between dynamics, 

transport, radiation, chemistry, and microphysics. 

Strong vertical gradients are observed in the mixing 

ratio of many trace constituents, including water 

vapor and ozone. This results in large part from the 

fact that the production and destruction mechanisms 

for many species are very different in the troposphere 

and stratosphere. Processes characterizing transport 

between these two atmospheric regions occur on a 

multitude of scales including global, synoptic, and 

subsynoptic. Of particular interest is the behavior of 

water vapor and various chemical compounds in the 

so-called tropical tropopause layer (TTL).

THE TROPICAL REACTOR. The tropical region is of great 

geophysical and climatic importance. It strongly 

affects the carbon cycle through exchanges of CO
2
 

between the atmosphere, ocean, and continental 

biosphere. Atmospheric chemistry is particularly 

active in this region, which receives large quantities 

of solar energy. Vertical exchanges by convection can 

occur extremely quickly, and signals related to surface 

processes can rapidly reach the tropical tropopause 

layer. Lightning is also frequent in vigorous storms, 

and intense precipitation removes soluble species 

from the atmosphere. Massive deforestation and 

land-use changes with associated biomass burning 

have profoundly affected the tropical region.

ATMOSPHERIC TRANSPORT. Perhaps the largest uncer-

tainties in chemical transport models are those as-

sociated with the formulation of subgrid transport. 

Large-scale advection is usually well simulated, but 

transport associated with smaller-scale features, 

and specifically vertical exchange, is not yet well 

quantified. Furthermore, parameterization of such 

transport is often approximate. Observational data 

are needed and should focus on obtaining informa-

tion about fast exchanges within frontal systems 

and convective storms and on exchanges between 

atmospheric layers and the surface.

Projects designed to address some of the questions 

outlined in the preceding three sections will require 

the use of multiple aircraft [e.g., HIAPER, Deutsches 

Zentrum für Luft-und Raumfahrt (DLR) High-

Altitude and Long Range Research Aircraft (HALO), 

the NASA WB-57F, the NSF/NCAR C-130, etc.], and 

even multiple types of platforms (spacecraft, vertical 

profilers, ground-based systems, ships). HIAPER 

should, therefore, be regarded as one important plat-

form that will complement others. Satellites provide 

the broad coverage needed to partially validate global 

models, but such systems provide little vertical pro-

file information. It must also be recognized that the 

ultimate scientific success of the GV will depend not 

only on the development of quality instrumentation 

for use on the aircraft but also on the concurrent 

development of suitable data assimilation techniques 

and complex models.
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Monitoring the structure and productivity of the 
biosphere. Data from imaging and profiling instru-

ments deployed on airborne and satellite platforms 

are essential inputs to climate and ecosystem models 

(NRC 1998, 2004; Running et al. 2004). Because of in-

accurate parameterizations, however, current process 

models produce wide disagreement in the location, 

types, and timing of ecosystem change when predict-

ing future responses to climate change (NRC 2001, 

2004). There is an unmet need to develop, test, and 

validate new remote sensing technologies to acquire 

the data needed for these models and to produce more 

reliable predictions. The suborbital HIAPER platform 

with its extended flight duration capabilities will al-

low for the deployment of observational systems at 

geographical scales that will meet this need and will 

enable investigators to pursue measurement scenarios 

that will contribute significantly to the systematic 

study of the Earth system. Specifically, the simultane-

ous acquisition of airborne imaging spectrometer and 

lidar data from HIAPER will potentially transform 

current Earth-observing measurement and monitor-

ing capabilities by providing the types of data that are 

needed to define the state and condition of ecosys-

tems at spatial resolutions that are not possible using 

ground or satellite sensors.

Imaging spectrometry and lidar are state-of-the-

art technologies that, when employed together, pro-

vide estimates of both biogeochemical properties and 

the three-dimensional structure of the land surface. 

Such observations are needed in order to improve 

predictions of ecosystem feedbacks to climate change. 

The type of coordinated spectrometer and lidar mea-

surements needed are not yet available from space-

borne platforms, and the flight duration, range, and 

altitude capabilities of HIAPER (see Table 1) and the 

ability to perform variable mission scenarios with this 

platform (e.g., by varying the time of day, orientation, 

altitude, and repeat period of flights) are essential for 

advancing scientific understanding of the terrestrial 

environment.

Climate and land-use changes are rapidly altering 

the structure, function, and biological diversity of the 

terrestrial environment in ways that are currently un-

predictable. Great uncertainties exist in understand-

ing ecosystem feedbacks through the regulation of 

carbon, water, and energy exchanges. Spectroscopy is 

currently used to measure and quantify a wide range 

of biogeochemical features that are of importance 

for Earth observation, including vegetation pigment 

composition and content (Fuentes et al. 2001; Jacque-

moud et al. 1996), canopy water content (Gao 1996; 

Ustin et al. 1998), and dry plant litter and/or wood 

(Asner 1998; Fourty et al. 1996). Additionally, soil 

surface properties like organic matter, clay type, and 

mineral content (Clark 1999; Huete 2004), as well as 

atmospheric water vapor (Ogunjemiyo et al. 2002) 

and ice clouds (Gao and Li 2000), can be quantified 

and mapped using spectroscopy. HIAPER will fill 

a critical need by enabling investigators to obtain 

spectroscopic measurements of such biogeochemical 

properties from a stable, upper-tropospheric plat-

form. Such measurements will be essential for testing 

and modeling climate change and, because of the 

temporal and regional scales of the data collected, will 

provide an important bridge between ground- and 

satellite-based observations.

One of the largest uncertainties in understanding 

the global carbon budget is knowledge of the amount, 

variability, and dynamics of stored biomass in global 

ecosystems. Airborne lidar technology can produce 

accurate three-dimensional (3D) maps of canopy 

structure, which are then used to characterize spatial 

variation in forest structure and biomass (Lefsky et al. 

1999, 2002) and to estimate fuel loading for wildfire 

hazard assessment and atmospheric emissions (Riaño 

et al. 2003). A well-calibrated, full-waveform, or 

small-footprint lidar is needed to obtain measure-

ments that will help to reduce uncertainties in carbon 

storage information (Gardner et al. 2003; Weishampel 

et al. 2000). Limitations on lidar systems deployed in 

space make airborne measurements that cover a wide 

range of ecosystem conditions essential for reducing 

this uncertainty. The deployment of such sensors on 

the high-altitude, long-range HIAPER platform will 

enable Earth science investigators to obtain critical 

observations of global ecosystems over a wide range 

of environmental conditions and sites.

THE START OF GV RESEARCH OPERA-
TIONS. With the support of NSF and the scientific 

community, NCAR elected to take a measured ap-

proach to the start of GV operations and initiated a 

gradual spinup to full-scale research missions. From 

the fall through early winter of 2005, HIAPER was 

outfitted and deployed from its local base of operations 

(Jefferson County Airport in Broomfield, Colorado) in 

support of a series of progressive science missions.

The primary objectives established for these mis-

sions were as follows:

• Providing a significant time period during which 

NCAR personnel could become thoroughly famil-

iar with the operation and performance capabili-

ties of the GV and with the operation of the various 

infrastructure systems on the aircraft;
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• permitting NCAR staff to support the gradual 

development of fundamental (standard) instru-

mentation for the aircraft;

• ensuring a suitable time period for NCAR per-

sonnel to work through payload certification 

processes and issues;

• showcasing the altitude and endurance capabilities 

of the GV while demonstrating the new data col-

lection, display, satellite communications, and data 

transfer capabilities of the aircraft infrastructure 

systems; and

• providing members of the scientific community 

with a valuable opportunity to perform initial, 

well-defined scientific missions with the GV.

Following the conclusion of the progressive science 

missions, the GV became available to the geosciences 

community for full-scale research missions support. The 

first large-scale observational program to be supported 

by HIAPER—the Terrain-Induced Rotor Experiment 

(T-REX; see Grubišič et al. 2004; more information is 

available online at www.joss.ucar.edu/trex)—took place 

from March to April 2006. Members of the scientific 

community interested in using the GV for the conduct 

of research programs can request HIAPER support 

using the existing NSF deployment pool and observing 

facility allocation process. Information on available 

NSF lower-atmospheric observing facilities and facility 

request procedures is available online at www.eol.ucar.
edu/dir_off/OFAP/info/UserGuide.pdf.
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