127 research outputs found
Preliminary Analysis of AIS Spectral Data Acquired from Semi-arid Shrub Communities in the Owens Valley, California
Spectral characteristics of semic-arid plant communities using 128 channel airborne imaging spectrometer (AIS) data acquired on October 30, 1984. Both field and AIS spectra of vegetation were relatively featureless and differed from substrate spectra primarily in albedo. Unvegetated sand dunes were examined to assess spectral variation resulting from topographic irregularity. Although shrub cover as low as 10% could be detected on relatively flat surfaces, such differences were obscured in more heterogeneous terrain. Sagebrush-covered fans which had been scarred by fire were studied to determine the effect of changes in plant density on reflectance. Despite noise in the atmospherically corrected spectra, these provide better resolution of differences in plant density than spectra which are solar-corrected only. A high negative correlation was found between reflectance and plant cover in areas which had uniform substrates and vegetation types. A lower correlation was found where vegetation and substrates were more diverse
Detection of interannual vegetation responses to climatic variability using AVIRIS data in a coastal savanna in California
11 pages, 10 figures.Ecosystem responses to interannual weather variability are large and superimposed over any long-term directional climatic responses making it difficult to assign causal relationships to vegetation change. Better understanding of ecosystem responses to interannual climatic variability is crucial to predicting long-term functioning and stability. Hyperspectral data have the potential to detect ecosystem responses that are undetected by broadband sensors and can be used to scale to coarser resolution global mapping sensors, e.g., advanced very high resolution radiometer (AVHRR) and MODIS. This research focused on detecting vegetation responses to interannual climate using the airborne visible-infrared imaging spectrometer (AVIRIS) data over a natural savanna in the Central Coast Range in California. Results of linear spectral mixture analysis and assessment of the model errors were compared for two AVIRIS images acquired in spring of a dry and a wet year. The results show that mean unmixed fractions for these vegetation types were not significantly different between years due to the high spatial variability within the landscape. However, significant community differences were found between years on a pixel basis, underlying the importance of site-specific analysis. Multitemporal hyperspectral coverage is necessary to understand vegetation dynamics.This work was supported in part by Foundation Barrie de la Maza, Spain, and NASA EOS Program Grant NAS5-31359.Peer reviewe
Prospect redux
The remote estimation of leaf biochemical content from spaceborne platforms has been the subject of many studies aimed at better understanding of terrestrial ecosystem functioning. The major ecological processes involved in exchange of matter and energy, like photosynthesis, primary production, evaportranspiration, respiration, and decomposition can be related to plant properties e.g., chlorophyll, water, protein, cellulose and lignin contents. As leaves represent the most important plant surfaces interacting with solar energy, a top priority has been to relate optical properties to biochemical constituents. Two different approaches have been considered: first, statistical correlations between the leaf reflectance (or transmittance) and biochemical content, and second, physically based models of leaf scattering and absorption developed using the laws of optics. Recently reviewed by Verdebout et al., the development of models of leaf optical properties has resulted in better understanding of the interaction of light with plant leaves. Present radiative transfer models mainly use chlorophyll and/or water contents as input parameters to calculate leaf reflectance. Inversion of these models allows to retrieve these constituents from spectrophotometric measurements. Conel et al. recently proposed a two-stream Kubelka-Munk model to analyze the influence of protein, cellulose, lignin, and starch on leaf reflectance, but in fact, the estimation of leaf biochemistry from remote sensing is still an open question. In order to clarify it, a laboratory experiment associating visible/infrared spectra of plan leaves both with physical measurements and biochemical analyses was conducted at the Joint Research Center during the summer of 1993. This unique data set has been used to upgrade the PROSPECT model, by including leaf biochemistry
Using foreground/background analysis to determine leaf and canopy chemistry
Spectral Mixture Analysis (SMA) has become a well established procedure for analyzing imaging spectrometry data, however, the technique is relatively insensitive to minor sources of spectral variation (e.g., discriminating stressed from unstressed vegetation and variations in canopy chemistry). Other statistical approaches have been tried e.g., stepwise multiple linear regression analysis to predict canopy chemistry. Grossman et al. reported that SMLR is sensitive to measurement error and that the prediction of minor chemical components are not independent of patterns observed in more dominant spectral components like water. Further, they observed that the relationships were strongly dependent on the mode of expressing reflectance (R, -log R) and whether chemistry was expressed on a weight (g/g) or are basis (g/sq m). Thus, alternative multivariate techniques need to be examined. Smith et al. reported a revised SMA that they termed Foreground/Background Analysis (FBA) that permits directing the analysis along any axis of variance by identifying vectors through the n-dimensional spectral volume orthonormal to each other. Here, we report an application of the FBA technique for the detection of canopy chemistry using a modified form of the analysis
Remote Sensing of Ploidy Level in Quaking Aspen (Populus Tremuloides Michx.)
Ploidy level in plants may influence ecological functioning, demography and response to climate change. However, measuring ploidy level typically requires intensive cell or molecular methods. We map ploidy level variation in quaking aspen, a dominant North American tree species that can be diploid or triploid and that grows in spatially extensive clones. We identify the predictors and spatial scale of ploidy level variation using a combination of genetic and ground‐based and airborne remote sensing methods. We show that ground‐based leaf spectra and airborne canopy spectra can both classify aspen by ploidy level with a precision‐recall harmonic mean of 0.75–0.95 and Cohen\u27s kappa of c. 0.6–0.9. Ground‐based bark spectra cannot classify ploidy level better than chance. We also found that diploids are more common on higher elevation and steeper sites in a network of forest plots in Colorado, and that ploidy level distribution varies at subkilometer spatial scales. Synthesis. Our proof‐of‐concept study shows that remote sensing of ploidy level could become feasible in this tree species. Mapping ploidy level across landscapes could provide insights into the genetic basis of species\u27 responses to climate change
Remote detection of invasive alien species
The spread of invasive alien species (IAS) is recognized as the most severe threat to biodiversity outside of climate change and anthropogenic habitat destruction. IAS negatively impact ecosystems, local economies, and residents. They are especially problematic because once established, they give rise to positive feedbacks, increasing the likelihood of further invasions and spread. The integration of remote sensing (RS) to the study of invasion, in addition to contributing to our understanding of invasion processes and impacts to biodiversity, has enabled managers to monitor invasions and predict the spread of IAS, thus supporting biodiversity conservation and management action. This chapter focuses on RS capabilities to detect and monitor invasive plant species across terrestrial, riparian, aquatic, and human-modified ecosystems. All of these environments have unique species assemblages and their own optimal methodology for effective detection and mapping, which we discuss in detail
Meta-analysis of the detection of plant pigment concentrations using hyperspectral remotely sensed data
Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a
A Range of Earth Observation Techniques for Assessing Plant Diversity
AbstractVegetation diversity and health is multidimensional and only partially understood due to its complexity. So far there is no single monitoring approach that can sufficiently assess and predict vegetation health and resilience. To gain a better understanding of the different remote sensing (RS) approaches that are available, this chapter reviews the range of Earth observation (EO) platforms, sensors, and techniques for assessing vegetation diversity. Platforms include close-range EO platforms, spectral laboratories, plant phenomics facilities, ecotrons, wireless sensor networks (WSNs), towers, air- and spaceborne EO platforms, and unmanned aerial systems (UAS). Sensors include spectrometers, optical imaging systems, Light Detection and Ranging (LiDAR), and radar. Applications and approaches to vegetation diversity modeling and mapping with air- and spaceborne EO data are also presented. The chapter concludes with recommendations for the future direction of monitoring vegetation diversity using RS
World Society of Emergency Surgery (WSES) guidelines for management of skin and soft tissue infections
Peer reviewe
- …