37 research outputs found

    Therapy-Related Myeloid Malignancies in Myeloma

    Get PDF
    Therapy related myeloid malignancies are an increasingly recognized treatment complication in patients undergoing therapy for multiple myeloma. The main predisposing factors are the alkylating agents, topoisomerase II inhibitors and radiotherapy, but recently questions have been raised regarding the immunomodulatory agent lenalidomide. Little is known about the new antimyeloma agents in the context of therapy related myeloid malignancies. The duration of treatment and the time from diagnosis are the main contributing factors in alkylating induced myeloid malignancies which occur 5–10 years after treatment, chromosome 5 and 7 abnormalities being the characteristic finding. High dose therapy (HDT) does not seem to be a major contributing factor per se in multiple myeloma. In a number of large published series, all the factors related with therapy-induced myelodysplasia were defined prior to HDT. Topoisomerase II inhibitors induce mainly acute leukemias which invariably correlate with dysregulation of the MLL gene. Radiotherapy causes therapy related myelodysplasia if applied in bone marrow producing areas, especially if combined with chemotherapy. Therapy related myeloid malignancies generally herald a poor prognosis. Karyotypic abnormalities seem to be the main prognostic factor. In all cases the risk for therapy related myeloid malignancies drops sharply by 10 years after the treatment

    Split First Dose Administration of Intravenous Daratumumab for the Treatment of Multiple Myeloma (MM) : Clinical and Population Pharmacokinetic Analyses

    Get PDF
    Introduction: Daratumumab, a human immunoglobulin GÎș monoclonal antibody targeting CD38, is approved as monotherapy and in combination with standard-of-care regimens for multiple myeloma. In clinical studies, the median durations of the first, second, and subsequent intravenous infusions of daratumumab were 7.0, 4.3, and 3.4 h, respectively. Splitting the first intravenous infusion of daratumumab over 2 days is an approved alternative dosing regimen to reduce the duration of the first infusion and provide flexibility for patients and healthcare providers. Methods: The feasibility of splitting the first 16-mg/kg infusion into two separate infusions of 8 mg/kg on Days 1 and 2 of the first treatment cycle was investigated in two cohorts [daratumumab, carfilzomib, and dexamethasone (D-Kd) and daratumumab, carfilzomib, lenalidomide, and dexamethasone (D-KRd)] of the phase 1b MMY1001 study. Additionally, a population pharmacokinetic (PK) analysis and simulations were used to compare the PK profiles of the split first dose regimen with the recommended single first dose regimens of daratumumab in previously approved indications. Results: In MMY1001, following administration of the second half of a split first dose on Cycle 1 Day 2, postinfusion median (range) daratumumab concentrations were similar between split first dose [D-Kd, 254.9 (125.8-435.5) ”g/ml; D-KRd, 277.2 (164.0-341.8) ”g/ml; combined, 256.8 (125.8-435.5) ”g/ml] and single first dose [D-Kd, 319.2 (237.5-394.7) ”g/ml]. At the end of weekly dosing, median (range) Cycle 3 Day 1 preinfusion daratumumab concentrations were similar between split first dose [D-Kd, 663.9 (57.7-1110.7) ”g/ml; D-KRd, 575.1 (237.9-825.5) ”g/ml; combined, 639.2 (57.7-1110.7) ”g/ml] and single first dose [D-Kd, 463.2 (355.9-792.9) ”g/ml]. The population PK simulations demonstrated virtually identical PK profiles after the first day of treatment for all approved indications and recommended dosing schedules of daratumumab. Conclusion: These data support the use of an alternative split first dose regimen of intravenous daratumumab for the treatment of MM. Trial Registration: ClinicalTrials.gov number, NCT01998971

    Split First Dose Administration of Intravenous Daratumumab for the Treatment of Multiple Myeloma (MM) : Clinical and Population Pharmacokinetic Analyses

    Get PDF
    Introduction: Daratumumab, a human immunoglobulin GÎș monoclonal antibody targeting CD38, is approved as monotherapy and in combination with standard-of-care regimens for multiple myeloma. In clinical studies, the median durations of the first, second, and subsequent intravenous infusions of daratumumab were 7.0, 4.3, and 3.4 h, respectively. Splitting the first intravenous infusion of daratumumab over 2 days is an approved alternative dosing regimen to reduce the duration of the first infusion and provide flexibility for patients and healthcare providers. Methods: The feasibility of splitting the first 16-mg/kg infusion into two separate infusions of 8 mg/kg on Days 1 and 2 of the first treatment cycle was investigated in two cohorts [daratumumab, carfilzomib, and dexamethasone (D-Kd) and daratumumab, carfilzomib, lenalidomide, and dexamethasone (D-KRd)] of the phase 1b MMY1001 study. Additionally, a population pharmacokinetic (PK) analysis and simulations were used to compare the PK profiles of the split first dose regimen with the recommended single first dose regimens of daratumumab in previously approved indications. Results: In MMY1001, following administration of the second half of a split first dose on Cycle 1 Day 2, postinfusion median (range) daratumumab concentrations were similar between split first dose [D-Kd, 254.9 (125.8-435.5) ”g/ml; D-KRd, 277.2 (164.0-341.8) ”g/ml; combined, 256.8 (125.8-435.5) ”g/ml] and single first dose [D-Kd, 319.2 (237.5-394.7) ”g/ml]. At the end of weekly dosing, median (range) Cycle 3 Day 1 preinfusion daratumumab concentrations were similar between split first dose [D-Kd, 663.9 (57.7-1110.7) ”g/ml; D-KRd, 575.1 (237.9-825.5) ”g/ml; combined, 639.2 (57.7-1110.7) ”g/ml] and single first dose [D-Kd, 463.2 (355.9-792.9) ”g/ml]. The population PK simulations demonstrated virtually identical PK profiles after the first day of treatment for all approved indications and recommended dosing schedules of daratumumab. Conclusion: These data support the use of an alternative split first dose regimen of intravenous daratumumab for the treatment of MM. Trial Registration: ClinicalTrials.gov number, NCT01998971

    Clinical predictors of long-term survival in newly diagnosed transplant eligible multiple myeloma - an IMWG Research Project

    Get PDF
    Purpose: multiple myeloma is considered an incurable hematologic cancer but a subset of patients can achieve long-term remissions and survival. The present study examines the clinical features of long-term survival as it correlates to depth of disease response. Patients & Methods: this was a multi-institutional, international, retrospective analysis of high-dose melphalan-autologous stem cell transplant (HDM-ASCT) eligible MM patients included in clinical trials. Clinical variable and survival data were collected from 7291 MM patients from Czech Republic, France, Germany, Italy, Korea, Spain, the Nordic Myeloma Study Group and the United States. Kaplan–Meier curves were used to assess progression-free survival (PFS) and overall survival (OS). Relative survival (RS) and statistical cure fractions (CF) were computed for all patients with available data. Results: achieving CR at 1 year was associated with superior PFS (median PFS 3.3 years vs. 2.6 years, p < 0.0001) as well as OS (median OS 8.5 years vs. 6.3 years, p < 0.0001). Clinical variables at diagnosis associated with 5-year survival and 10-year survival were compared with those associated with 2-year death. In multivariate analysis, age over 65 years (OR 1.87, p = 0.002), IgA Isotype (OR 1.53, p = 0.004), low albumin < 3.5 g/dL (OR = 1.36, p = 0.023), elevated beta 2 microglobulin ≄ 3.5 mg/dL (OR 1.86, p < 0.001), serum creatinine levels ≄ 2 mg/dL (OR 1.77, p = 0.005), hemoglobin levels < 10 g/dL (OR 1.55, p = 0.003), and platelet count < 150k/ÎŒL (OR 2.26, p < 0.001) appeared to be negatively associated with 10-year survival. The relative survival for the cohort was ~0.9, and the statistical cure fraction was 14.3%. Conclusions: these data identify CR as an important predictor of long-term survival for HDM-ASCT eligible MM patients. They also identify clinical variables reflective of higher disease burden as poor prognostic markers for long-term survival

    Daratumumab, lenalidomide, and dexamethasone in relapsed/refractory myeloma: a cytogenetic subgroup analysis of POLLUX

    Get PDF
    High cytogenetic risk abnormalities confer poor outcomes in multiple myeloma patients. In POLLUX, daratumumab/lenalidomide/dexamethasone (D-Rd) demonstrated significant clinical benefit versus lenalidomide/dexamethasone (Rd) in relapsed/refractory multiple myeloma (RRMM) patients. We report an updated subgroup analysis of POLLUX based on cytogenetic risk. The cytogenetic risk was determined using fluorescence in situ hybridization/karyotyping; patients with high cytogenetic risk had t(4;14), t(14;16), or del17p abnormalities. Minimal residual disease (MRD; 10–5) was assessed via the clonoSEQ¼ assay V2.0. 569 patients were randomized (D-Rd, n = 286; Rd, n = 283); 35 (12%) patients per group had high cytogenetic risk. After a median follow-up of 44.3 months, D-Rd prolonged progression-free survival (PFS) versus Rd in standard cytogenetic risk (median: not estimable vs 18.6 months; hazard ratio [HR], 0.43; P < 0.0001) and high cytogenetic risk (median: 26.8 vs 8.3 months; HR, 0.34; P = 0.0035) patients. Responses with D-Rd were deep, including higher MRD negativity and sustained MRD-negativity rates versus Rd, regardless of cytogenetic risk. PFS on subsequent line of therapy was improved with D-Rd versus Rd in both cytogenetic risk subgroups. The safety profile of D-Rd by cytogenetic risk was consistent with the overall population. These findings demonstrate the improved efficacy of daratumumab plus standard of care versus standard of care in RRMM, regardless of cytogenetic risk

    International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM)

    Get PDF
    Smoldering multiple myeloma (SMM) is an asymptomatic precursor state of multiple myeloma (MM). Recently, MM was redefined to include biomarkers predicting a high risk of progression from SMM, thus necessitating a redefinition of SMM and its risk stratification. We assembled a large cohort of SMM patients meeting the revised IMWG criteria to develop a new risk stratification system. We included 1996 patients, and using stepwise selection and multivariable analysis, we identified three independent factors predicting progression risk at 2 years: serum M-protein >2 g/dL (HR: 2.1), involved to uninvolved free light-chain ratio >20 (HR: 2.7), and marrow plasma cell infiltration >20% (HR: 2.4). This translates into 3 categories with increasing 2-year progression risk: 6% for low risk (38%; no risk factors, HR: 1); 18% for intermediate risk (33%; 1 factor; HR: 3.0), and 44% for high risk (29%; 2–3 factors). Addition of cytogenetic abnormalities (t(4;14), t(14;16), +1q, and/or del13q) allowed separation into 4 groups (low risk with 0, low intermediate risk with 1, intermediate risk with 2, and high risk with ≄3 risk factors) with 6, 23, 46, and 63% risk of progression in 2 years, respectively. The 2/20/20 risk stratification model can be easily implemented to identify high-risk SMM for clinical research and routine practice and will be widely applicable

    Daratumumab, lenalidomide, and dexamethasone in relapsed/refractory myeloma: a cytogenetic subgroup analysis of POLLUX

    Get PDF
    High cytogenetic risk abnormalities confer poor outcomes in multiple myeloma patients. In POLLUX, daratumumab/lenalidomide/dexamethasone (D-Rd) demonstrated significant clinical benefit versus lenalidomide/dexamethasone (Rd) in relapsed/refractory multiple myeloma (RRMM) patients. We report an updated subgroup analysis of POLLUX based on cytogenetic risk. The cytogenetic risk was determined using fluorescence in situ hybridization/karyotyping; patients with high cytogenetic risk had t(4;14), t(14;16), or del17p abnormalities. Minimal residual disease (MRD; 10–5) was assessed via the clonoSEQ¼ assay V2.0. 569 patients were randomized (D-Rd, n = 286; Rd, n = 283); 35 (12%) patients per group had high cytogenetic risk. After a median follow-up of 44.3 months, D-Rd prolonged progression-free survival (PFS) versus Rd in standard cytogenetic risk (median: not estimable vs 18.6 months; hazard ratio [HR], 0.43; P < 0.0001) and high cytogenetic risk (median: 26.8 vs 8.3 months; HR, 0.34; P = 0.0035) patients. Responses with D-Rd were deep, including higher MRD negativity and sustained MRD-negativity rates versus Rd, regardless of cytogenetic risk. PFS on subsequent line of therapy was improved with D-Rd versus Rd in both cytogenetic risk subgroups. The safety profile of D-Rd by cytogenetic risk was consistent with the overall population. These findings demonstrate the improved efficacy of daratumumab plus standard of care versus standard of care in RRMM, regardless of cytogenetic risk

    Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): results from a randomised, multicentre, open-label, phase 3 study

    No full text
    Background: Lenalidomide and bortezomib frontline exposure has raised a growing need for novel treatments for patients with relapsed or refractory multiple myeloma. Carfilzomib in combination with daratumumab has shown substantial efficacy with tolerable safety in relapsed or refractory multiple myeloma in a phase 1 study. In this study, we aimed to compare the efficacy and safety of carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone in patients with relapsed or refractory multiple myeloma. Methods: In this randomised, multicentre, open-label, phase 3 study, 466 patients recruited from 102 sites across North America, Europe, Australia, and Asia with relapsed or refractory multiple myeloma were randomly assigned 2:1 to carfilzomib, dexamethasone, and daratumumab (KdD) or carfilzomib and dexamethasone (Kd). All patients received twice per week carfilzomib at 56 mg/m2 (20 mg/m2; days 1 and 2 during cycle 1). Daratumumab (8 mg/kg) was administered intravenously on days 1 and 2 of cycle 1 and at 16 mg/kg weekly for the remaining doses of the first two cycles, then every 2 weeks for four cycles (cycles 3–6), and every 4 weeks thereafter. Patients received 40 mg dexamethasone weekly (20 mg for patients ≄75 years old starting on the second week). The primary endpoint was progression-free survival assessed by intention to treat. Adverse events were assessed in the safety population. This trial (NCT03158688) is registered with ClinicalTrials.gov, and is active but not recruiting. Findings: Between June 13, 2017, and June 25, 2018, 466 patients of 569 assessed for eligibility were enrolled. After median follow-up of approximately 17 months, median progression-free survival was not reached in the KdD group versus 15·8 months in the Kd group (hazard ratio 0·63; 95% CI 0·46–0·85; p=0·0027). Median treatment duration was longer in the KdD versus the Kd group (70·1 vs 40·3 weeks). Grade 3 or higher adverse events were reported in 253 (82%) patients in the KdD group and 113 (74%) patients in the Kd group. The frequency of adverse events leading to treatment discontinuation was similar in both groups (KdD, 69 [22%]; Kd, 38 [25%]). Interpretation: KdD significantly prolonged progression-free survival versus Kd in patients with relapsed or refractory multiple myeloma and was associated with a favourable benefit–risk profile. Funding: Amgen. © 2020 Elsevier Lt
    corecore