179 research outputs found

    Magnetorotational instability in proto-neutron stars

    Full text link
    Magnetorotational instability (MRI) has been suggested to lead a rapid growth of the magnetic field in core collapse supernovae and produce departures from spherical syymmetry that can be important in determining the explosion mechanism. We address the problem of stability in differentially rotating magnetized proto-neutron stars at the beginning of their evolution. Criteria for MRI in proto-neutron stars are derived without simplying assumptions about a weak magnetic field and are substantially different from the standard condition. If the magnetic field is strong, MRI can occur only in the neighbourhood of the region where the spherical radial component of the magnetic field vanishes. The growth rate of MRI is relatively low except for perturbations with very small scales which usually are not detected in numerical simulations. We find that MRI in proto-neutron stars grows more slowly than than the double diffusive instability analogous the Goldreich-Schubert-Fricke instability in ordinary stars.Comment: 6 pages, 2 figures, accepted for publication in Astronomy and Astrophysic

    Neutrino transport and hydrodynamic stability of rotating proto-neutron stars

    Full text link
    We consider stability of differentially rotating non-magnetic proto-neutron stars. When neutrino transport is efficient, the star can be subject to a diffusive instability that can occur even in the convectively stable region. The instability arises on the time-scale comparable to the time-scale of thermal diffusion. Hydrodynamic motions driven by the instability can lead to anisotropy in the neutrino flux since the instability is suppressed near the equator and rotation axis.Comment: 6 pages. Accepted for publication in A&

    Force-free pulsar magnetosphere: instability and generation of MHD waves

    Full text link
    Magnetohydrodynamic (MHD) instabilities can play an important role in the structure and dynamics of the pulsar magnetosphere. We consider the instabilitycaused by differential rotation that is suggested by many theoretical models. Stability is considered by means of a linear analysis within the frane of the force-free MHD. We argue that differentially rotating magnetospheres are unstable for any particular geometry of the magnetic field and rotation law. The characteristic growth time of instability is of the order of the rotation period. The instability can lead to fluctuations of the emission and enhancement of diffusion in the magnetosphere.Comment: 5 pages; to appear in Astronomy and Astrophysic

    Magnetic and spin evolution of neutron stars in close binaries

    Get PDF
    The evolution of neutron stars in close binary systems with a low-mass companion is considered assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario of the evolution in a close binary system in accordance with which the neutron star passes throughout four evolutionary phases ("isolated pulsar" -- "propeller" -- accretion from the wind of a companion -- accretion due to Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties both of the neutron star and low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period being processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 101010^{10} yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The considered model can well account for the origin of millisecond pulsars.Comment: 18 pages + 10 figures, uses epsf.sty. Accepted by MNRA

    Evolution of Crustal Magnetic Fields in Isolated Neutron Stars : Combined Effects of Cooling and Curvature of Space-time

    Get PDF
    The ohmic decay of magnetic fields confined within the crust of neutron stars is considered by incorporating both the effect of neutron star cooling and the effect of space-time curvature produced by the intense gravitational field of the star. For this purpose a stationary and static gravitational field has been considered with the standard as well as the accelerated cooling models of neutron stars. It is shown that general relativistic effect reduces the magnetic field decay rate substantially. At the late stage of evolution when the field decay is mainly determined by the impurity-electron scattering, the effect of space-time curvature suppresses the role of the impurity content significantly and reduces the decay rate by more than an order of magnitude. Even with a high impurity content the decay rate is too low to be of observational interest if the accelerated cooling model along with the effect of space-time curvature is taken into account. It is, therefore, pointed out that if a decrease in the magnetic field strength by more than two orders of magnitude from its initial value is detected by observation then the existence of quark in the core of the neutron star would possibly be ruled out.Comment: 15 pages, AAS LATEX macros v4.0, 5 postscript figures, Accepted for publication in the Astrophysical Journal (Part I

    The neutron star in Cassiopeia A: equation of state, superfluidity, and Joule heating

    Full text link
    The thermomagnetic evolution of the young neutron star in Cassiopea A is studied by considering fast neutrino emission processes. In particular, we consider neutron star models obtained from the equation of state computed in the framework of the Brueckner-Bethe-Goldstone many-body theory and variational methods, and models obtained with the Akmal-Pandharipande-Ravenhall equation of state. It is shown that it is possible to explain a fast cooling regime as the one observed in the neutron star in Cassiopea A if the Joule heating produced by dissipation of the small-scale magnetic field in the crust is taken into account. We thus argue that it is difficult to put severe constraints on the superfluid gap if the Joule heating is considered.Comment: 4 pages, 2 figures, to appear on A&A Letter

    Mixing zones in magnetized differentially rotating stars

    Full text link
    We study the secular instability of magnetized differentially rotating radiative zones taking account of viscosity and magnetic and thermal diffusivities. The considered instability generalizes the well-known Goldreich-Schubert-Fricke instability for the case of a sufficiently strong magnetic field. In magnetized stars, instability can lead to a formation of non-spherical unstable zones where weak turbulence mixes the material between the surface and interiors. Such unstable zones can manifest themselves by a non-spherical distribution of abundance anormalies on the stellar surface.Comment: 8 pages, accepted by Astronomy and Astrophysic

    Generation of the magnetic field in jets

    Get PDF
    We consider dynamo action under the combined influence of turbulence and large-scale shear in sheared jets. Shear can stretch turbulent magnetic field lines in such a way that even turbulent motions showing mirror symmetry become suitable for generation of a large-scale magnetic field. We derive the integral induction equation governing the behaviour of the mean field in jets. The main result is that sheared jets may generate a large-scale magnetic field if shear is sufficiently strong. The generated mean field is mainly concentrated in a magnetic sheath surrounding the central region of a jet, and it exhibits sign reversals in the direction of the jet axis. Typically, the magnetic field in a sheath is dominated by the component along the jet that can reach equipartition with the kinetic energy of particles, The field in the central region of jets has a more disordered structure.Comment: 7 pages, accepted for publication in A&

    Magnetohydrodynamic waves in the pulsar magnetosphere

    Full text link
    MHD waves can be responsible for plasma fluctuations and short-term variations of the pulsar emission. We consider the properties of plane and cylindrical waves that can exist in the force-free magnetosphere. Waves are considered by means of a linear analysis of the force-free MHD equations. We argue that these particular types of waves can exist in the magnetosphere of pulsars. These waves are closely related to the Alfven waves of the standard magnetohydrodynamics but are modified by the force-free condition and non-zero charge density. We derive the dispersion relation for magnetospheric waves and show that the wave periods are likely within the range \sim 10^{-2}-10^(-4} s depending on the magnetospheric parameters.Comment: 4 pages; to appear in Astronomy and Astrophysic
    • …
    corecore