213 research outputs found

    New trends for metal complexes with anticancer activity

    Get PDF
    Medicinal inorganic chemistry can exploit the unique properties of metal ions for the design of new drugs. This has, for instance, led to the clinical application of chemotherapeutic agents for cancer treatment, such as cisplatin. The use of cisplatin is, however, severely limited by its toxic side-effects. This has spurred chemists to employ different strategies in the development of new metal-based anticancer agents with different mechanisms of action. Recent trends in the field are discussed in this review. These include the more selective delivery and/or activation of cisplatin-related prodrugs and the discovery of new non-covalent interactions with the classical target, DNA. The use of the metal as scaffold rather than reactive centre and the departure from the cisplatin paradigm of activity towards a more targeted, cancer cell-specific approach, a major trend, are discussed as well. All this, together with the observation that some of the new drugs are organometallic complexes, illustrates that exciting times lie ahead for those interested in ‘metals in medicine

    The Caulobacter crescentus DNA-(adenine-N6)-methyltransferase CcrM methylates DNA in a distributive manner

    Get PDF
    The specificity and processivity of DNA methyltransferases have important implications regarding their biological functions. We have investigated the sequence specificity of CcrM and show here that the enzyme has a high specificity for GANTC sites, with only minor preferences at the central position. It slightly prefers hemimethylated DNA, which represents the physiological substrate. In a previous work, CcrM was reported to be highly processive [Berdis et al. (1998) Proc. Natl Acad. Sci. USA 95: 2874–2879]. However upon review of this work, we identified a technical error in the setup of a crucial experiment in this publication, which prohibits making any statement about the processivity of CcrM. In this study, we performed a series of in vitro experiments to study CcrM processivity. We show that it distributively methylates six target sites on the pUC19 plasmid as well as two target sites located on a 129-mer DNA fragment both in unmethylated and hemimethylated state. Reaction quenching experiments confirmed the lack of processivity. We conclude that the original statement that CcrM is processive is no longer valid

    Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs

    Get PDF
    This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy

    A Case of Successful Selective Abortion Using Radio-frequency Ablation in Twin Pregnancy Suffering from Severe Twin to Twin Transfusion Syndrome

    Get PDF
    Twin to twin transfusion syndrome (TTTS) is one of the major complication of monochorionic twin pregnancy which is mainly understood by placental vascular anastomosis. Perinatal mortality and morbidity is high as 80-100% if untreated and even higher if the disease is developed at early stage. Variety of methods of isolating or intercepting placental vascular anastomosis are introduced, but they are only available in centers where all the required equipments are prepared. We report here a case of TTTS complicated with severe polyhydroamnios during the second trimester. The blood supply to donor twin was interrupted successfully at 19+2 weeks of gestation by minimally invasive radio-frequency cord ablation, under ultrasound guidance. The normal recipient twin was delivered successfully at 35 weeks of gestation and had no eventful neonatal course

    Cisplatin and Oxaliplatin Toxicity: Importance of Cochlear Kinetics as a Determinant for Ototoxicity

    Get PDF
    Background Cisplatin is a commonly used platinum anti-cancer drug. Regrettably cisplatin has dose-limiting ototoxic side effects, e.g. the drug can induce an irreversible hearing loss. The ototoxic mechanisms of cisplatin have not been elucidated in the human ear and no clinically useful oto-protectors are yet available. Cisplatin is a necessary part of many treatment regimes. Its beneficial therapeutic effects might be reduced if cisplatin was excluded from the treatment in order to protect the hearing function. In this work the ototoxic effects of cisplatin are studied with the aim to better understand the mechanisms behind the irreversible hearing loss induced by this drug. Oxaliplatin is a second generation platinum-derivative anti-cancer drug, free from ototoxic side effects in clinical practice. The effects of oxaliplatin on the inner ear have been studied in this work and the results are compared with cisplatin treatment. The two drugs differ regarding both anti-cancer effects and side effects, which could be attributed to differences in pharmacokinetic factors, cellular uptake and apoptotic mechanisms. The thioredoxin redox system with the enzyme thioredoxin reductase (TrxR) was studied in cochleae due to a suggested DNA-independent apoptotic mechanism of the hair cells. The cochlear pharmacokinetics of cisplatin was assessed and the transport protein organic cation transporter 2 (OCT2) was studied in relation to the ototoxic effect of cisplatin. Material and methods Cultured human colon carcinoma cells and cell cultures of rat organ of Corti were used for apoptosis studies in vitro following exposure to cisplatin and oxaliplatin. Cisplatin and oxaliplatin were administered i.v. to guinea pigs, followed by in vivo sampling of blood, cerebrospinal fluid (CSF) and scala tympani (ST) perilymph. Liquid chromatography with post-column derivatization was used to determine the concentration of parent drug in the samples. Electrophysiological hearing thresholds and the loss of hair cells were assessed to evaluate their ototoxic effects. Phenformin, a potential blocker of OCT2 was administered and the ototoxic side effect of cisplatin was evaluated. For immunohistochemical studies, cochlea from rat, guinea pig and pig were used, where TrxR and OCT2 were evaluated in the cochlea. TrxR-assays were used to measure the TrxR activity in cochlear tissue, both in vivo and in vitro. Results The results from the in vitro studies showed that addition of either cisplatin or oxaliplatin to the culture medium in organ of Corti cell cultures caused a similar amount of outer hair cell loss and inhibition of TrxR activity. Cisplatin exposure to cultured human colon carcinoma cells also reduced the activity of TrxR. The results from the in vivo studies showed that a considerable concentration of cisplatin was present in ST perilymph as compared with weak concentrations of oxaliplatin after high dose oxaliplatin i.v. Ten minutes after cisplatin administration, its concentration in ST perilymph was 4-fold higher in the basal turn of the cochlea as compared to the apex. Cisplatin could be analysed in ST perilymph for up to 120 min. Phenformin i.v. did not reduce the ototoxic side-effect of cisplatin. Positive immunoreactivity to TrxR was evident in both hair cells and spiral ganglion cells. Futhermore, OCT2 was expressed in the supporting cells of organ of Corti and in the spiral ganglion cells. Conclusion The transport of cisplatin to the vulnerable cells of hearing seems to be of major importance for the ototoxic effects. An early high concentration of cisplatin in the base of the cochlea and delayed elimination of cisplatin from ST perilymph may be related to the cisplatin-induced loss of outer hair cells in the basal turn of the cochlea. Cisplatin and oxaliplatin both cause similar ototoxic effects when the organ of Corti is directly exposed in vitro. The thioredoxin redox system with the TrxR enzyme may well play a critical role in cisplatininduced ototoxicity. The presence of OCT2 in the supporting cells indicates that this transport protein is primarily not involved in the uptake of cisplatin from the systemic circulation but rather from the deeper compartments of the cochlea. The knowledge elicited in this work will hopefully suggest objectives for further studies in order to develop oto-protective treatments to preserve the hearing of cisplatin treated patients

    Cell Death by SecTRAPs: Thioredoxin Reductase as a Prooxidant Killer of Cells

    Get PDF
    BACKGROUND: SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins) can be formed from the selenoprotein thioredoxin reductase (TrxR) by targeting of its selenocysteine (Sec) residue with electrophiles, or by its removal through C-terminal truncation. SecTRAPs are devoid of thioredoxin reductase activity but can induce rapid cell death in cultured cancer cell lines by a gain of function. PRINCIPAL FINDINGS: Both human and rat SecTRAPs killed human A549 and HeLa cells. The cell death displayed both apoptotic and necrotic features. It did not require novel protein synthesis nor did it show extensive nuclear fragmentation, but it was attenuated by use of caspase inhibitors. The redox active disulfide/dithiol motif in the N-terminal domain of TrxR had to be maintained for manifestation of SecTRAP cytotoxicity. Stopped-flow kinetics showed that NADPH can reduce the FAD moiety in SecTRAPs at similar rates as in native TrxR and purified SecTRAPs could maintain NADPH oxidase activity, which was accelerated by low molecular weight substrates such as juglone. In a cellular context, SecTRAPs triggered extensive formation of reactive oxygen species (ROS) and consequently antioxidants could protect against the cell killing by SecTRAPs. CONCLUSIONS: We conclude that formation of SecTRAPs could contribute to the cytotoxicity seen upon exposure of cells to electrophilic agents targeting TrxR. SecTRAPs are prooxidant killers of cells, triggering mechanisms beyond those of a mere loss of thioredoxin reductase activity

    Ehrensache! Für sich selbst und andere

    No full text

    Bayesian latent class modeling to evaluate the predictive value of feline leukemia virus and feline immunodeficiency virus testing in apparently healthy and clinically ill shelter cats.

    No full text
    Shelters often make euthanasia or adoption decisions based on the results of FeLV-FIV point-of-care tests but given the low estimated prevalence of these diseases and imperfect test performance, this might not be a good practice because of diagnostic error. The objectives of this study were to determine the true prevalence of FeLV and FIV in apparently healthy and sick shelter cats in Mississippi, estimate predictive value of the Zoetis Witness FeLV-FIV Rapid ImmunoMigration test results at the estimated true prevalences through Bayesian latent class modeling, and formulate testing recommendations for shelters. One chapter will review the literature on FeLV and FIV. The bulk of this thesis will focus on determining the true prevalence of retroviral infection in Mississippi shelter cat populations. The last chapter will use Bayesian modeling to estimate test performance and predictive value of test results in healthy and sick shelter cat populations
    corecore