14 research outputs found

    The role of premagmatic rifting in shaping a volcanic continental margin: An example from the Eastern North American Margin

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(11),(2020): e2020JB019576, doi:10.1029/2020JB019576.Both magmatic and tectonic processes contribute to the formation of volcanic continental margins. Such margins are thought to undergo extension across a narrow zone of lithospheric thinning (~100 km). New observations based on existing and reprocessed data from the Eastern North American Margin contradict this hypothesis. With ~64,000 km of 2‐D seismic data tied to 40 wells combined with published refraction, deep reflection, receiver function, and onshore drilling efforts, we quantified along‐strike variations in the distribution of rift structures, magmatism, crustal thickness, and early post‐rift sedimentation under the shelf of Baltimore Canyon Trough (BCT), Long Island Platform, and Georges Bank Basin (GBB). Results indicate that BCT is narrow (80–120 km) with a sharp basement hinge and few rift basins. The seaward dipping reflectors (SDR) there extend ~50 km seaward of the hinge line. In contrast, the GBB is wide (~200 km), has many syn‐rift structures, and the SDR there extend ~200 km seaward of the hinge line. Early post‐rift depocenters at the GBB coincide with thinner crust suggesting “uniform” thinning of the entire lithosphere. Models for the formation of volcanic margins do not explain the wide structure of the GBB. We argue that crustal thinning of the BCT was closely associated with late syn‐rift magmatism, whereas the broad thinning of the GBB segment predated magmatism. Correlation of these variations to crustal terranes of different compositions suggests that the inherited rheology determined the premagmatic response of the lithosphere to extension.Financial support was provided by the U.S. Department of Energy Award DE‐FE‐0026087 to Battelle Memorial Institute under the “Mid‐Atlantic U.S. Offshore Carbon Storage Resource Assessment” Project.2021-04-1

    Geometry and subsidence history of the Dead Sea basin : a case for fluid-induced mid-crustal shear zone?

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Geophysical Research 117 (2012): B01406, doi:10.1029/2011JB008711.Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8–8.5 km) and widest (~15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3–4 km under the northern end of the lake and 5–6 km farther north. Crystalline basement is ~11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ~18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ~17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux into a slowly extending continental crust can cause rapid basin subsidence that may be erroneously interpreted as an increased rate of tectonic activity.Fieldwork was funded by U.S. AID Middle Eastern Regional Cooperation Program grant M21–012, with in-kind contributions by Al-Balqa’ Applied University (Jordan), the Geophysical Institute of Israel, and the U.S. Geological Survey

    New Frontiers in Tectonic Research - At the Midst of Plate Convergence

    No full text
    Ocean closure involves a variety of converging tectonic processes that reshape shrinking basins, their adjacent margins and the entire earth underneath. Following continental breakup, margin formation and sediment accumulation, tectonics normally relaxes and the margins become passive for millions of years. However, when final convergence is at the gate, the passive days of any ocean and its margins are over or soon will be. The fate of the Mediterranean and Persian Gulf is seemingly known beforehand, as they are nestled in the midst of Africa-Arabia plate convergence with Eurasia. Over millions of years through the Cenozoic era they progressively shriveled, leaving only a glimpse of the Tethys Ocean. Eventually, the basins will adhere to the Alpine-Himalaya orogen and dissipate. This book focuses on a unique stage in the ocean closure process, when significant convergence already induced major deformations, yet the inter-plate basins and margins still record the geological history

    An extensive pockmark field on the upper Atlantic margin of Southeast Brazil: spatial analysis and its relationship with salt diapirism

    No full text
    We present new evidence for the existence of a large pockmark field on the continental slope of the Santos Basin, offshore southeast Brazil. A recent high-resolution multibeam bathymetric survey revealed 984 pockmarks across a smooth seabed at water depths of 300–700 m. Four patterns of pockmark arrays were identified in the data: linear, network, concentric, and radial. Interpretation of Two-dimensional multi-channel seismic reflection profiles that crosscut the surveyed area shows numerous salt diapirs in various stages of development (e.g. salt domes, walls, and anticlines). Some diapirs were exposed on the seafloor, whereas the tops of others (diapir heads) were situated several hundreds of meters below the surface. Extensional faults typically cap these diapirs and reach shallow depths beneath the seafloor. Our analysis suggests that these pockmark patterns are linked to stages in the development of underlying diapirs and their related faults. The latter may extend above salt walls, take the form of polygonal extensional faults along higher-level salt anticlines, or concentric faults above diapir heads that reach close to the seafloor. Seismic data also revealed buried pockmark fields that had repeatedly developed since the Middle Miocene. The close spatio-temporal connection between pockmark and diapir distribution identified here suggests that the pockmark field extends further across the Campos and Espírito Santo Basins, offshore Brazil. Spatial overlap between the pockmark field topping a large diapir field and a proliferous hydrocarbon basin is believed to have facilitated the escape of fluid/gas from the subsurface to the water column, which was enhanced by halokinesis. This provides a possible control on fossil gas contribution to the marine system over geological time

    Deep pockmarks as natural sediment traps: a case study from southern Santos Basin (SW Atlantic upper slope)

    No full text
    This study examines the role of deep pockmarks in acting as natural sediment traps. Multibeam bathymetry, single-channel seismic and sediment samples data were used for describing the morphology of pockmarks as well as the nature of sediments inside and outside these depressed features, in an area of Santos Basin (SW Atlantic upper slope), dominated by the strong flow of Brazil Current. Results show that the grain size and chemical composition of sediments inside pockmarks are distinct from the outside. Also, radiocarbon dating shows that Holocene ages are found only in samples located inside the pockmarks. Combination of sedimentological, geochemical and geochronological data allowed to recognise that deep pockmarks might present distinct sediment deposition processes when compared with those of shallow pockmarks, in which turbulence impedes sediment deposition, as reported in the literature.The authors acknowledge the crew and researchers of the two surveys held in 2016 and 2017, onboard R.V. Alpha Crucis. The São Paulo Science Foundation (FAPESP, grants 2014/08266-2, 2016/22194-7 and 2015/17763-2) funded this work. Partnerships between MM.de M., U.S. and F.L-S., are funded by FAPESP (grant 2017/50191-8) and the Brazilian National Research Council (CNPq, grant 401041/2014-0), respectively. M.M.de M. acknowledges CNPq for the research grants 303132/2014-0 and 300962/2018-5. This study was financedin partby the Coordenação deAperfeiçoamento dePessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 (R.B.R. MSc. Scholarship)

    The Alpha Crucis Carbonate Ridge (ACCR): Discovery of a giant ring-shaped carbonate complex on the SW Atlantic margin

    No full text
    Recently acquired bathymetric and high-resolution seismic data from the upper slope of Santos Basin, southern Brazilian margin, reveal a major geomorphological feature in the SW Atlantic that is interpreted as a carbonate ridge - the Alpha Crucis Carbonate Ridge (ACCR). The ACCR is the first megastructure of this type described on the SW Atlantic margin. The ~17 × 11-km-wide ring-shaped ACCR features tens of >100-m-high steep-sided carbonate mounds protruding from the surrounding seabed and flanked by elongated depressions. Comet-like marks downstream of the mound structures indicate that the area is presently influenced by the northward flow of the Intermediate Western Boundary Current (IWBC), a branch of the Subtropical Gyre that transports Antarctic Intermediate Water. Abundant carbonate sands and gravels cover the mounds and are overlain by a biologically significant community of living and dead ramified corals and associated invertebrates. The IWBC acts as a hydrodynamic factor that is responsible for both shaping the bottom and transporting coral larvae. We contend that the ACCR was formed by upward fluid flow along active sub-surface faults and fractures that formed by lateral extension generated by the ascending movement of salt diapirs at depth. The ACCR provides an important modern and accessible analogue for a seabed carbonate build-up related to sub-surface hydrocarbon systems.The authors are indebted to the crew and researchers who participated in the Jan-Feb 2019 survey aboard the R.V. Alpha Crucis for their constant support. Acknowledgements are also due to the São Paulo Science Foundation (FAPESP grants 2014/08266-2, 2015/17763-2, and 2016/22194-0). MMdeM acknowledges the Brazilian National Research Council (CNPq, grant 300962/2018-5). The partnership between MMdeM and the US was supported by FAPESP (grant 2017/50191-8 – SPRINT Program). The partnership between MMdeM and F.J.L. was supported by CNPq (grant 401041/2014-0). The authors gratefully acknowledge support from Shell Brasil through the BIOIL project at the Oceanographic Institute of the University of São Paulo and the strategic importance of the support given by ANP through R&D levy regulation. We thank Petrel-Schlumberger for providing academic licenses that enabled the seismic interpretation
    corecore