7 research outputs found

    Novel, technical advance: a new grapevine transpiration prototype for grape berries and whole bunch based on relative humidity sensors

    Get PDF
    Grape berry transpiration is considered an important process during maturation, but scientific evidence is scarce. In the literature, there is only one report showing reduced maturation when bunch transpiration is artificially slowed down. Traditionally, grape berry transpiration has been measured by weighing grape berries on scale for a given time, correctly assuming that the weight reduction is due to water lost. Commercially available instruments adequate to measure gas exchange in small fruits are not suitable for whole grape berry bunch. Here, we present an open differential chamber system that can be used with isolated grape berries or alternatively with a whole grape berry bunch for measuring grape berry/bunch transpiration based on the use of relative humidity sensors from Vaisala. When used with isolated grape berries, open differential chamber system validation was made by using Tempranillo grape berries collected at different phenological stages. For the whole bunch transpiration prototype, two different validations were made. Firstly, measurements were made inserting inside the chamber an increasing number of Eppendorf tubes filled with water. Secondly, transpiration was measured in whole Tempranillo bunches sampled at different phenological stages. An important output of this work is that the fact of detaching the bunch from the plant did not change the bunch gas exchange rates at least for several hours

    Harvest index, combined with impaired N availability constrains the responsiveness of durum wheat to elevated CO 2 concentration and terminal water stress.

    Get PDF
    Despite its relevance, few studies to date have analysed the role of harvest index (HI) in the responsiveness of wheat (Triticum spp.) to elevated CO2 concentration ([CO2]) under limited water availability. The goal of the present work was to characterise the role of HI in the physiological responsiveness of durum wheat (Triticum durum Desf.) exposed to elevated [CO2] and terminal (i.e. during grain filling) water stress. For this purpose, the performance of wheat plants with high versus low HI (cvv. Sula and Blanqueta, respectively) was assessed under elevated [CO2](700m molmol-1 vs 400 m molmol-1 CO2) and terminal water stress (imposed after ear emergence) in CO2 greenhouses. Leaf carbohydrate build-up combined with limitations in CO2 diffusion (in droughted plants) limited the responsiveness to elevated [CO2] in both cultivars. Elevated [CO2] only increased wheat yield in fully watered Sula plants, where its larger HI prevented an elevated accumulation of total nonstructural carbohydrates. It is likely that the putative shortened grain filling period in plants exposed to water stress also limited the responsiveness of plants to elevated [CO2]. In summary, our study showed that even under optimal water availability conditions, only plants with a high HI responded to elevated [CO2] with increased plant growth, and that terminal drought constrained the responsiveness of wheat plants to elevated [CO2Peer Reviewe

    Novel, technical advance: A new grapevine transpiration prototype for grape berries and whole bunch based on relative humidity sensors

    No full text
    9 Pags.- 7 Figs. © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync- nd/4.0/).Grape berry transpiration is considered an important process during maturation, but scientific evidence is scarce. In the literature, there is only one report showing reduced maturation when bunch transpiration is artificially slowed down. Traditionally, grape berry transpiration has been measured by weighing grape berries on scale for a given time, correctly assuming that the weight reduction is due to water lost. Commercially available instruments adequate to measure gas exchange in small fruits are not suitable for whole grape berry bunch. Here, we present an open differential chamber system that can be used with isolated grape berries or alternatively with a whole grape berry bunch for measuring grape berry/bunch transpiration based on the use of relative humidity sensors from Vaisala. When used with isolated grape berries, open differential chamber system validation was made by using Tempranillo grape berries collected at different phenological stages. For the whole bunch transpiration prototype, two different validations were made. Firstly, measurements were made inserting inside the chamber an increasing number of Eppendorf tubes filled with water. Secondly, transpiration was measured in whole Tempranillo bunches sampled at different phenological stages. An important output of this work is that the fact of detaching the bunch from the plant did not change the bunch gas exchange rates at least for several hours. For validations, transpiration values obtained with our prototype were compared with water losses inferred from grape berry weighing on scale for a given time, obtaining highly significant correlations. We tested the system applying to the bunch an anti-transpirant, confirming that the anti-transpirant application reduced bunch transpiration and delayed maturity.Authors thank Gobierno de Navarra (Dirección General de Industria, Energía e Innovación; Departamento de Desarrollo Económico) for financial support (projects PT035-036 SENSOR, PT005-006 SENSOR 2 and PC144-145 MULTI-SENSOR).Peer reviewe

    Methodological advances: Using greenhouses to simulate climate change scenarios

    No full text
    11 Pags.- 1 Tabl.- 10 Figs. Available online 29 March 2014.Human activities are increasing atmospheric CO2 concentration and temperature. Related to this global warming, periods of low water availability are also expected to increase. Thus, CO2 concentration, temperature and water availability are three of the main factors related to climate change that potentially may influence crops and ecosystems. In this report, we describe the use of growth chamber – greenhouses (GCG) and temperature gradient greenhouses (TGG) to simulate climate change scenarios and to investigate possible plant responses. In the GCG, CO2 concentration, temperature and water availability are set to act simultaneously, enabling comparison of a current situation with a future one. Other characteristics of the GCG are a relative large space of work, fine control of the relative humidity, plant fertirrigation and the possibility of light supplementation, within the photosynthetic active radiation (PAR) region and/or with ultraviolet-B (UV-B) light. In the TGG, the three above-mentioned factors can act independently or in interaction, enabling more mechanistic studies aimed to elucidate the limiting factor(s) responsible for a given plant response. Examples of experiments, including some aimed to study photosynthetic acclimation, a phenomenon that leads to decreased photosynthetic capacity under long-term exposures to elevated CO2, using GCG and TGG are reported.Authors thank Genoma España (within a collaborative agreement with Genome Canada (Grapegen Project)), the Innovine Project (Combining innovation in vineyard management and genetic diversity for a sustainable European viticulture (Call FP7-KBBE-2012–6, Proposal N° 311775-INNOVINE)), the Spanish Ministry of Science and Innovation [grant number BFU2008-01405/BFI and BFU2011-26989], Fundación Universitaria de Navarra (Plan de Investigación de la Universidad de Navarra), Caja Navarra and Gobierno de Aragón (A03 research group) for financial support, Asociación de Amigos de la Universidad de Navarra for PhD Thesis grants.Peer reviewe

    Novel, technical advance: a new grapevine transpiration prototype for grape berries and whole bunch based on relative humidity sensors

    No full text
    Grape berry transpiration is considered an important process during maturation, but scientific evidence is scarce. In the literature, there is only one report showing reduced maturation when bunch transpiration is artificially slowed down. Traditionally, grape berry transpiration has been measured by weighing grape berries on scale for a given time, correctly assuming that the weight reduction is due to water lost. Commercially available instruments adequate to measure gas exchange in small fruits are not suitable for whole grape berry bunch. Here, we present an open differential chamber system that can be used with isolated grape berries or alternatively with a whole grape berry bunch for measuring grape berry/bunch transpiration based on the use of relative humidity sensors from Vaisala. When used with isolated grape berries, open differential chamber system validation was made by using Tempranillo grape berries collected at different phenological stages. For the whole bunch transpiration prototype, two different validations were made. Firstly, measurements were made inserting inside the chamber an increasing number of Eppendorf tubes filled with water. Secondly, transpiration was measured in whole Tempranillo bunches sampled at different phenological stages. An important output of this work is that the fact of detaching the bunch from the plant did not change the bunch gas exchange rates at least for several hours

    Volatile compounds other than CO2 emitted by different microorganisms promote distinct posttranscriptionally regulated responses in plants

    No full text
    A “box‐in‐box” cocultivation system was used to investigate plant responses to microbial volatile compounds (VCs) and to evaluate the contributions of organic and inorganic VCs (VOCs and VICs, respectively) to these responses. Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures, with and without charcoal filtration. No VOCs were detected in the headspace of growth chambers containing fungal cultures with charcoal filters. However, these growth chambers exhibited elevated CO2 and bioactive CO and NO headspace concentrations. Independently of charcoal filtration, VCs from both fungal phytopathogens promoted growth and distinct developmental changes. Plants cultured at CO2 levels observed in growth boxes containing fungal cultures were identical to those cultured at ambient CO2. Plants exposed to charcoal‐filtered fungal VCs, nonfiltered VCs, or superelevated CO2 levels exhibited transcriptional changes resembling those induced by increased irradiance. Thus, in the “box‐in‐box” system, (a) fungal VICs other than CO2 and/or VOCs not detected by our analytical systems strongly influence the plants' responses to fungal VCs, (b) different microorganisms release VCs with distinct action potentials, (c) transcriptional changes in VC‐exposed plants are mainly due to enhanced photosynthesis signaling, and (d) regulation of some plant responses to fungal VCs is primarily posttranscriptional.This work was partially supported by the Comisión Interministerial de Ciencia y Tecnología and Fondo Europeo de Desarrollo Regional (Spain; grants BIO2013‐49125‐C2‐1‐P and BIO2016‐78747‐P) and the Government of Navarra (refs. P1044 AGROESTI and P1004 PROMEBIO).Peer reviewe
    corecore