177 research outputs found

    Il governo delle acque

    Get PDF
    SUMARIO: I. IL CONTESTO LEGISLATIVO.— II. LA FRAMMENTAZIONE DELLE DISCIPLINE: 1 Le opere idrauliche. 2 La polizia delle acque. 3. Il demanio idrico. 4. Il servizio idrico integrato. 5. Le acque come beni pubblici. Il regime domenicale.— III. LA PIANIFICAZIONE DELLE ACQUE PERNO CENTRALE DI TUTTO IL SISTEMA: 1. I piani di assetto idrogeologico. 2. Il regime concessorio.— IV. IL COSIDDETTO CODICE AMBIENTALE: D.LEGL.152/06: 1 Piano di bacino distrettuale. 2. Piano di gestione e bilancio idrico. 3. I piani di tutela delle acque. 4. Conclusioni

    Non-destructive multi-parametric instruments for fish freshness estimation

    Get PDF

    Decellularized diaphragmatic muscle drives a constructive angiogenic response in vivo

    Get PDF
    Skeletal muscle tissue engineering (TE) aims to efficiently repair large congenital and acquired defects. Biological acellular scaffolds are considered a good tool for TE, as decellularization allows structural preservation of tissue extracellular matrix (ECM) and conservation of its unique cytokine reservoir and the ability to support angiogenesis, cell viability, and proliferation. This represents a major advantage compared to synthetic scaffolds, which can acquire these features only after modification and show limited biocompatibility. In this work, we describe the ability of a skeletal muscle acellular scaffold to promote vascularization both ex vivo and in vivo. Specifically, chicken chorioallantoic membrane assay and protein array confirmed the presence of pro-angiogenic molecules in the decellularized tissue such as HGF, VEGF, and SDF-1\u3b1. The acellular muscle was implanted in BL6/J mice both subcutaneously and ortotopically. In the first condition, the ECM-derived scaffold appeared vascularized 7 days post-implantation. When the decellularized diaphragm was ortotopically applied, newly formed blood vessels containing CD31+, \u3b1SMA+, and vWF+ cells were visible inside the scaffold. Systemic injection of Evans Blue proved function and perfusion of the new vessels, underlying a tissue-regenerative activation. On the contrary, the implantation of a synthetic matrix made of polytetrafluoroethylene used as control was only surrounded by vWF+ cells, with no cell migration inside the scaffold and clear foreign body reaction (giant cells were visible). The molecular profile and the analysis of macrophages confirmed the tendency of the synthetic scaffold to enhance inflammation instead of regeneration. In conclusion, we identified the angiogenic potential of a skeletal muscle-derived acellular scaffold and the pro-regenerative environment activated in vivo, showing clear evidence that the decellularized diaphragm is a suitable candidate for skeletal muscle tissue engineering and regeneration

    Endothelial properties of third-trimester amniotic fluid stem cells cultured in hypoxia

    Get PDF
    open12siopenSchiavo, Andrea Alex; Franzin, Chiara; Albiero, Mattia; Piccoli, Martina; Spiro, Giovanna; Bertin, Enrica; Urbani, Luca; Visentin, Silvia; Cosmi, Erich; Fadini, Gian Paolo; De Coppi, Paolo; Pozzobon, MichelaSchiavo, ANDREA ALEX; Franzin, Chiara; Albiero, Mattia; Piccoli, Martina; Spiro, Giovanna; Bertin, Enrica; Urbani, Luca; Visentin, Silvia; Cosmi, Erich; Fadini, GIAN PAOLO; DE COPPI, Paolo; Pozzobon, Michel

    Precision measurements of Linear Scattering Density using Muon Tomography

    Full text link
    We demonstrate that muon tomography can be used to precisely measure the properties of various materials. The materials which have been considered have been extracted from an experimental blast furnace, including carbon (coke) and iron oxides, for which measurements of the linear scattering density relative to the mass density have been performed with an absolute precision of 10%. We report the procedures that are used in order to obtain such precision, and a discussion is presented to address the expected performance of the technique when applied to heavier materials. The results we obtain do not depend on the specific type of material considered and therefore they can be extended to any application.Comment: 16 pages, 4 figure

    On the high-density expansion for Euclidean random matrices

    Get PDF
    Diagrammatic techniques to compute perturbatively the spectral properties of Euclidean random matrices (ERM) in the high-density regime are introduced and discussed in detail. Such techniques are developed in two alternative and very different formulations of the mathematical problem and are shown to give identical results up to second order in the perturbative expansion. One method, based on writing the so-called resolvent function as a Taylor series, allows us to group the diagrams into a small number of topological classes, providing a simple way to determine the infrared (small momenta) behaviour of the theory up to third order, which is of interest for the comparison with experiments. The other method, which reformulates the problem as a field theory, can instead be used to study the infrared behaviour at any perturbative order.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis

    Get PDF
    (1) Lipid profiling in MuS and OND patients. (2) Search of alterations associated with MuS. (3) Characterization of differences

    LIMPIC: a computational method for the separation of protein MALDI-TOF-MS signals from noise

    Get PDF
    BACKGROUND: Mass spectrometry protein profiling is a promising tool for biomarker discovery in clinical proteomics. However, the development of a reliable approach for the separation of protein signals from noise is required. In this paper, LIMPIC, a computational method for the detection of protein peaks from linear-mode MALDI-TOF data is proposed. LIMPIC is based on novel techniques for background noise reduction and baseline removal. Peak detection is performed considering the presence of a non-homogeneous noise level in the mass spectrum. A comparison of the peaks collected from multiple spectra is used to classify them on the basis of a detection rate parameter, and hence to separate the protein signals from other disturbances. RESULTS: LIMPIC preprocessing proves to be superior than other classical preprocessing techniques, allowing for a reliable decomposition of the background noise and the baseline drift from the MALDI-TOF mass spectra. It provides lower coefficient of variation associated with the peak intensity, improving the reliability of the information that can be extracted from single spectra. Our results show that LIMPIC peak-picking is effective even in low protein concentration regimes. The analytical comparison with commercial and freeware peak-picking algorithms demonstrates its superior performances in terms of sensitivity and specificity, both on in-vitro purified protein samples and human plasma samples. CONCLUSION: The quantitative information on the peak intensity extracted with LIMPIC could be used for the recognition of significant protein profiles by means of advanced statistic tools: LIMPIC might be valuable in the perspective of biomarker discovery
    • …
    corecore