153 research outputs found

    Perovskites as surface-assisted room temperature protonic conductor humidity sensor

    Get PDF
    This paper shows a correlation between surface effective porosity due to various sintering regimes and humidity sensitive electrical properties of the perovskite-based bulk type humidity sensors. Furthermore, room temperature humidity transduction mechanism of the thick film type humidity sensors was studied in details through electrochemical impedance spectroscopy (EIS) and major transmissive components were detected by fitting to the equivalent circuits. The materials were synthesized employing solid state reaction and bulk and film type devices were fabricated by hydraulic pressing and screen printing techniques, respectively. The morphological and elemental characterizations were carried on using FESEM, EFTEM, and EDX. Physical properties including open porosity/bulk density were investigated through ASTM methods. An innovative self-designed material test fixture with ceramic supports was fabricated for high S/N ratio electrical measurement of the bulk samples. All the sensors were set up at 20-95% RH. The morphological, physical, and electrical results of bulk pellets indicate direct correlation of the open cavities and AC conduction. Presence of the ionic transport is clearly observed from the frequency-conductance spectra at room temperature. Noise-free detected behavior via EIS proves that proton transfer mechanism is a dominant responsible

    Enhanced protein immobilization on polymers - a plasma surface activation study

    Get PDF
    Over the last years, polymers have gained great attention as substrate material, because of the possibility to produce low-cost sensors in a high-throughput manner or for rapid prototyping and the wide variety of polymeric materials available with different features (like transparency, flexibility, stretchability, etc.). For almost all biosensing applications, the interaction between biomolecules (for example, antibodies, proteins or enzymes) and the employed substrate surface is highly important. In order to realize an effective biomolecule immobilization on polymers, different surface activation techniques, including chemical and physical methods, exist. Among them, plasma treatment offers an easy, fast and effective activation of the surfaces by micro/nanotexturing and generating functional groups (including carboxylic acids, amines, esters, aldehydes or hydroxyl groups). Hence, here we present a systematic and comprehensive plasma activation study of various polymeric surfaces by optimizing different parameters, including power, time, substrate temperature and gas composition. Thereby, the highest immobilization efficiency along with a homogenous biomolecule distribution is achieved with a 5-min plasma treatment under a gas composition of 50% oxygen and nitrogen, at a power of 1000 W and a substrate temperature of 80 C. These results are also confirmed by different surface characterization methods, including SEM, XPS and contact angle measurements

    Investigation of room temperature protonic conduction of perovskite humidity sensors

    Get PDF
    This paper shows a correlation between surface effective porosity due to various sintering regimes and humidity sensitive electrical properties of the perovskite-based bulk type humidity sensors, at room temperature. Furthermore, room temperature humidity transduction mechanism of the thick film type humidity sensors was studied in detail through electrochemical impedance spectroscopy (EIS) and major transmissive components were detected by the fitting of the Bode diagrams and Nyquist complexes to the equivalent circuits. The microstructural, morphological and elemental characterizations were carried on using XRD, EFTEM, FESEM, and EDX. Physical properties including open porosity/bulk density were investigated through American Standard Test Method (ASTM). An innovative self-designed material test fixture with ceramic supports was fabricated for a high S/N ratio electrical measurement of the bulk samples. All the sensors were set up at 20-95% RH. The morphological, physical, and electrical results of the bulk pellets indicate a direct correlation of the open cavities and AC conduction. The higher the open porosity is, the greater is the conduction and vice versa. Presence of the ionic transport is clearly observed from the frequency-conductance spectra at room temperature. Noise-free detected behavior via EIS proves that the proton transfer mechanism is a dominant responsible, and executed by both charge transfer resistance and kinetically controlled charge transfer (diffusive species) at low and middle to high RH. Next to the Warburg effect (at 80% RH), for the first time, a Gerischer impedance was found as a dominant agent of transduction at 85% RH to above

    Barium strontium titanate humidity sensor: impact of doping on the structural and electrical properties

    Get PDF
    The influence of Mg2+ doping (3 mol %) on structural and humidity sensing properties of (Ba0.5,Sr0.5)TiO3 (BST) perovskite nanocomposite were studied in details. Microstructural properties revealed the particle size, surface area, and average pore volume diminished for doped sample. For the MgO doped BST sensor, the film resistance and total impedance are changed more than four orders of magnitude in the 20–95% RH range, while BST sensor shows three orders change. The 3 mol % MgO doped sample with maximum hysteresis of 6.1 RH% and response/recovery time of about 30/80 s exhibits faster characteristics compare to pure BST sample with 6.8 RH% hysteresis and response/recovery of 41 s and 98 s, respectively. Transduction mechanism was found based on the proton transfer and further confirmed by a Bode plot and Nyquist complex impedance plane plot

    A Real-Time Thermal Sensor System for Quantifying the Inhibitory Effect of Antimicrobial Peptides on Bacterial Adhesion and Biofilm Formation

    Get PDF
    The increasing rate of antimicrobial resistance (AMR) in pathogenic bacteria is a global threat to human and veterinary medicine. Beyond antibiotics, antimicrobial peptides (AMPs) might be an alternative to inhibit the growth of bacteria, including AMR pathogens, on different surfaces. Biofilm formation, which starts out as bacterial adhesion, poses additional challenges for antibiotics targeting bacterial cells. The objective of this study was to establish a real-time method for the monitoring of the inhibition of (a) bacterial adhesion to a defined substrate and (b) biofilm formation by AMPs using an innovative thermal sensor. We provide evidence that the thermal sensor enables continuous monitoring of the effect of two potent AMPs, protamine and OH-CATH-30, on surface colonization of bovine mastitis-associated Escherichia (E.) coli and Staphylococcus (S.) aureus. The bacteria were grown under static conditions on the surface of the sensor membrane, on which temperature oscillations generated by a heater structure were detected by an amorphous germanium thermistor. Bacterial adhesion, which was confirmed by white light interferometry, caused a detectable amplitude change and phase shift. To our knowledge, the thermal measurement system has never been used to assess the effect of AMPs on bacterial adhesion in real time before. The system could be used to screen and evaluate bacterial adhesion inhibition of both known and novel AMPs

    Clinical Characteristics and Treatment Patterns of Children and Adults With IgA Nephropathy or IgA Vasculitis: Findings From the CureGN Study

    Get PDF
    Introduction: The Cure Glomerulonephropathy Network (CureGN) is a 66-center longitudinal observational study of patients with biopsy-confirmed minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, or IgA nephropathy (IgAN), including IgA vasculitis (IgAV). This study describes the clinical characteristics and treatment patterns in the IgA cohort, including comparisons between IgAN versus IgAV and adult versus pediatric patients. Methods: Patients with a diagnostic kidney biopsy within 5 years of screening were eligible to join CureGN. This is a descriptive analysis of clinical and treatment data collected at the time of enrollment. Results: A total of 667 patients (506 IgAN, 161 IgAV) constitute the IgAN/IgAV cohort (382 adults, 285 children). At biopsy, those with IgAV were younger (13.0 years vs. 29.6 years, P < 0.001), more frequently white (89.7% vs. 78.9%, P = 0.003), had a higher estimated glomerular filtration rate (103.5 vs. 70.6 ml/min per 1.73 m2, P < 0.001), and lower serum albumin (3.4 vs. 3.8 g/dl, P < 0.001) than those with IgAN. Adult and pediatric individuals with IgAV were more likely than those with IgAN to have been treated with immunosuppressive therapy at or prior to enrollment (79.5% vs. 54.0%, P < 0.001). Conclusion: This report highlights clinical differences between IgAV and IgAN and between children and adults with these diagnoses. We identified differences in treatment with immunosuppressive therapies by disease type. This description of baseline characteristics will serve as a foundation for future CureGN studies

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≥week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk
    corecore