202 research outputs found

    Suppressed reflectivity due to spin-controlled localization in a magnetic semiconductor

    Full text link
    The narrow gap semiconductor FeSi owes its strong paramagnetism to electron-correlation effects. Partial Co substitution for Fe produces a spin-polarized doped semiconductor. The spin-polarization causes suppression of the metallic reflectivity and increased scattering of charge carriers, in contrast to what happens in other magnetic semiconductors, where magnetic order reduces the scattering. The loss of metallicity continues progressively even into the fully polarized state, and entails as much as a 25% reduction in average mean-free path. We attribute the observed effect to a deepening of the potential wells presented by the randomly distributed Co atoms to the majority spin carriers. This mechanism inverts the sequence of steps for dealing with disorder and interactions from that in the classic Al'tshuler Aronov approach - where disorder amplifies the Coulomb interaction between carriers - in that here, the Coulomb interaction leads to spin polarization which in turn amplifies the disorder-induced scattering.Comment: 6 figures Submitted to PR

    Optical evidence for heavy charge carriers in FeGe

    Full text link
    The optical spectrum of the cubic helimagnetic metal FeGe has been investigated in the frequency range from 0.01 - 3.1 eV for different temperatures from 30 K to 296 K. The optical conductivity shows the evolution of a low energy (0.22 eV) interband transition and the development of a narrow free carrier response with a strong energy and temperature dependence. The frequency dependent effective mass and scattering rate derived from the optical data indicate the formation of dressed quasi-particles with a mass renormalization factor of 12. Similar to FeSi the spectral weight in FeGe is not recovered over a broad frequency range, an effect usually attributed to the influence of the on-site Coulomb interaction.Comment: 5 pages, 5 figure

    Optical conductivity of filled skutterudites

    Full text link
    A simple tight-binding model is constructed for the description of the electronic structure of some Ce-based filled skutterudite compounds showing an energy gap or pseudogap behavior. Assuming band-diagonal electron interactions on this tight-binding model, the optical conductivity spectrum is calculated by applying the second-order self-consistent perturbation theory to treat the electron correlation. The correlation effect is found to be of great importance on the description of the temperature dependence of the optical conductivity. The rapid disappearance of an optical gap with increasing temperature is obtained as observed in the optical experiment for Ce-based filled-skutterudite compounds.Comment: 6 pages, 7 figures, use jpsj2.cls, to appear in J. Phys. Soc. Jpn. Vol.73, No.10 (2004

    Calculation of Optical Conductivity of YbB12_{12} using Realistic Tight-Binding Model

    Get PDF
    Based on the previously reported tight-binding model fitted to the LDA+U band calculation, optical conductivity of the prototypical Kondo insulator YbB12_{12} is calculated theoretically. Many-body effects are taken into account by the self-consistent second order perturbation theory. The gross shape of the optical conductivity observed in experiments are well described by the present calculation, including their temperature-dependences.Comment: 6 pages, 7 figures, use jpsj2.cls, to appear in J. Phys. Soc. Jpn. Vol.73, No.10 (2004

    Formation Mechanism of Hybridization Gap in Kondo Insulators based on a Realistic Band Model and Application to YbB12_{12}

    Get PDF
    A new LDA+U band calculation is performed on the Kondo insulator material YbB12_{12} and an energy gap of about 0.001Ryd is obtained. Based on this, a simple tight-binding model with 5dϵ\epsilon and 4f Γ8\Gamma_8 orbitals on Yb atoms and the nearest neighbor σ\sigma-bonds between them is constructed with a good agreement to the above the LDA+U calculation near the gap. The density of states is also calculated and the shape is found to be very asymmetric with respect to the gap. A formation mechanism of the gap is clarified for the first time in a realistic situation with the orbital degeneracies in both conduction bands and the f states. This model can be a useful starting point for incorporating the strong correlation effect, and for understanding all the thermal, thermoelectric, transport and magnetic properties of YbB12_{12}.Comment: 15 pages, 15 figures, to appear in J. Phys. Soc. Jpn. Vol. 72 No. 5 (2003

    Thermal and Dynamical Properties of the Two-band Hubbard Model Compared with FeSi

    Full text link
    We study the two-band Hubbard model introduced by Fu and Doniach as a model for FeSi which is suggested to be a Kondo insulator. Using the self-consistent second-order perturbation theory combined with the local approximation which becomes exact in the limit of infinite dimensions, we calculate the specific heat, the spin susceptibility and the dynamical conductivity and point out that the reduction of the energy gap due to correlation is not significant in contrast to the previous calculation. It is also demonstrated that the gap at low temperatures in the optical conductivity is filled up at a rather low temperature than the gap size, which is consistent with the experiment.Comment: 6 pages, LaTeX, 7 PS figures included, uses RevTe

    Correlation Effects on Optical Conductivity of FeSi

    Full text link
    Effects of electron correlation in FeSi are studied in terms of the two-band Hubbard model with the density of states obtained from the band calculation. Using the self-consistent second-order perturbation theory combined with the local approximation, the correlation effects are investigated on the density of states and the optical conductivity spectrum, which are found to reproduce the experiments done by Damascelli et al. semiquantitatively. It is also found that the peak at the gap edge shifts to lower energy region by correlation effects, as is seen in the experiments.Comment: 4 pages, 3 figure

    In vivo dopamine-D2 and serotonin-5-HT2 receptor binding study of risperidone and haloperidol

    Get PDF
    金沢大学疾患モデル総合研究センターAn in vivo receptor binding technique was applied to evaluate the affinities of risperidone and haloperidol for dopamine-D2 receptors (D2) and serotonin-5-HT2 receptors (5-HT2) in rat brain with [3H]YM-09151-2 and [3H]ketanserin as selective ligands. Radioactivities were obtained in the striatum, frontal cortex, and cerebellum of the rats treated with the ligands. Time course study of receptor occupancy at 25 to 250 min after single doses of the drugs (1 mg/kg, IP) showed higher 5-HT2 occupancy in the frontal cortex and lower D2 occupancy in the striatum by risperidone than by haloperidol. Dose-response analysis of receptor occupancy revealed risperidone demonstrated higher binding affinity for 5-HT2 than for D2, while the reverse was observed with haloperidol. It appeared that risperidone (1 mg/kg, IP), but not haloperidol (1 mg/kg, IP), demonstrated regional selectivity in D2 occupancy favouring frontal cortex more than the striatum. That risperidone displayed a higher ratio of 5-HT2 to D2 in occupancy than haloperidol is in agreement with the previous findings obtained in vitro. © 1994

    Time course of dopamine1,2 and serotonin2 receptor binding of antipsychotics in vivo

    Get PDF
    金沢大学疾患モデル総合研究センターAn in vivo receptor binding technique was applied to evaluate the affinities of clozapine (20 mg/kg), RMI-81582 (20 mg/kg), and haloperidol (1 mg/kg) for dopamine D1, D2 and serotonin 5-HT2 receptors in rat brain with [3H]-SCH23390, [3H]-YM-09151-2, and [3H]-ketanserin as selective ligands. The time course study of receptor occupancy at 25 to 250 min after intraperitoneal administration of the drugs showed higher 5-HT2 and lower D2 receptor occupancies of clozapine and RMI-81582 than those of haloperidol both in the striatum and frontal cortex. The 5-HT2/D2 ratios of receptor occupancy for clozapine and RMI-81582 were about 6 to 8 times higher than that for haloperidol. Stable occupancies of D1 receptors were observed only with RMI-81582 and clozapine, the former demonstrating the higher occupancy. These findings are in agreement with the previous findings obtained under in vitro conditions and may account for some part of the properties of atypical antipsychotic drugs. © 1994

    Coupling of Glucose Deprivation with Impaired Histone H2B Monoubiquitination in Tumors

    Get PDF
    Metabolic reprogramming is associated with tumorigenesis. However, glucose metabolism in tumors is poorly understood. Here, we report that glucose levels are significantly lower in bulk tumor specimens than those in normal tissues of the same tissue origins. We show that mono-ubiquitinated histone H2B (uH2B) is a semi-quantitative histone marker for glucose. We further show that loss of uH2B occurs specifically in cancer cells from a wide array of tumor specimens of breast, colon, lung and additional 23 anatomic sites. In contrast, uH2B levels remain high in stromal tissues or non-cancerous cells in the tumor specimens. Taken together, our data suggest that glucose deficiency and loss of uH2B are novel properties of cancer cells in vivo, which may represent important regulatory mechanisms of tumorigenesis
    corecore