6 research outputs found
Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a steckel mill
Obtaining high levels of mechanical properties in steels is directly linked to the use of special mechanical forming processes and the addition of alloying elements during their manufacture. This work presents a study of a hot-rolled steel strip produced to achieve a yield strength above 600 MPa, using a niobium microalloyed HSLA steel with non-stoichiometric titanium (titanium/nitrogen ratio above 3.42), and rolled on a Steckel mill. A major challenge imposed by rolling on a Steckel mill is that the process is reversible, resulting in long interpass times, which facilitates recrystallization and grain growth kinetics. Rolling parameters whose aim was to obtain the maximum degree of microstructural refinement were determined by considering microstructural evolution simulations performed in MicroSim-SM (R) software and studying the alloy through physical simulations to obtain critical temperatures and determine the CCT diagram. Four ranges of coiling temperatures (525-550 degrees C/550-600 degrees C/600-650 degrees C/650-700 degrees C) were applied to evaluate their impact on microstructure, precipitation hardening, and mechanical properties, with the results showing a very refined microstructure, with the highest yield strength observed at coiling temperatures of 600-650 degrees C. This scenario is explained by the maximum precipitation of titanium carbide observed at this temperature, leading to a greater contribution of precipitation hardening provided by the presence of a large volume of small-sized precipitates. This paper shows that the combination of optimized industrial parameters based on metallurgical mechanisms and advanced modeling techniques opens up new possibilities for a robust production of high-strength steels using a Steckel mill. The microstructural base for a stable production of high-strength hot-rolled products relies on a consistent grain size refinement provided mainly by the effect of Nb together with appropriate rolling parameters, and the fine precipitation of TiC during cooling provides the additional increase to reach the requested yield strength values
Panorámica de la innovación en España a través de la evolución de indicadores regionales
Peer reviewe
Sodium Manganese Ferrite Water Splitting Cycle: Unravelling the Effect of Solid–Liquid Interfaces in Molten Alkali Carbonates
In this work, the Na2CO3 of the sodium manganese ferrite thermochemical cycle was substituted by different eutectic or eutectoid alkali carbonate mixtures. Substituting Na2CO3 with the eutectoid (Li0.07Na0.93)2CO3 mixture resulted in faster hydrogen production after the first cycle, shifting the hydrogen production maximum toward shorter reaction times. Thermodynamic calculations and in situ optical microscopy attributed this fact to the partial melting of the eutectoid carbonate, which helps the diffusion of the ions. Unfortunately, all the mixtures exhibit a significant loss of reversibility in terms of hydrogen production upon cycling. Among them, the nonsubstituted Na mixture exhibits the highest reversibility in terms of hydrogen production followed by the 7%Li-Na mixture, while the 50%Li-Na and Li-K-Na mixtures do not produce any hydrogen after the first cycle. The loss of reversibility is attributed to both the formation of undesired phases and sintering, the latter being more pronounced in the eutectic and eutectoid alkali carbonate mixtures, where the melting of the carbonate is predicted by thermodynamics.This Project is funded by the Department of Economic Development, Sustainability and Environment of the Basque Government (CICe 2019-KK-2019/00097 and H2BASQUE-KK-2021/00054), and by the Spanish Government (H2-Plan-KC-2021/00002 founded with the Next Generation EU). The authors thank technical and human support provided by SGIker (UPV/EHU/ERDF, EU)
Production of a non-stoichiometric Nb-Ti HSLA steel by thermomechanical processing on a steckel mill
Obtaining high levels of mechanical properties in steels is directly linked to the use of special mechanical forming processes and the addition of alloying elements during their manufacture. This work presents a study of a hot-rolled steel strip produced to achieve a yield strength above 600 MPa, using a niobium microalloyed HSLA steel with non-stoichiometric titanium (titanium/nitrogen ratio above 3.42), and rolled on a Steckel mill. A major challenge imposed by rolling on a Steckel mill is that the process is reversible, resulting in long interpass times, which facilitates recrystallization and grain growth kinetics. Rolling parameters whose aim was to obtain the maximum degree of microstructural refinement were determined by considering microstructural evolution simulations performed in MicroSim-SM (R) software and studying the alloy through physical simulations to obtain critical temperatures and determine the CCT diagram. Four ranges of coiling temperatures (525-550 degrees C/550-600 degrees C/600-650 degrees C/650-700 degrees C) were applied to evaluate their impact on microstructure, precipitation hardening, and mechanical properties, with the results showing a very refined microstructure, with the highest yield strength observed at coiling temperatures of 600-650 degrees C. This scenario is explained by the maximum precipitation of titanium carbide observed at this temperature, leading to a greater contribution of precipitation hardening provided by the presence of a large volume of small-sized precipitates. This paper shows that the combination of optimized industrial parameters based on metallurgical mechanisms and advanced modeling techniques opens up new possibilities for a robust production of high-strength steels using a Steckel mill. The microstructural base for a stable production of high-strength hot-rolled products relies on a consistent grain size refinement provided mainly by the effect of Nb together with appropriate rolling parameters, and the fine precipitation of TiC during cooling provides the additional increase to reach the requested yield strength values
Triple Helix indicators as an emergent area of enquiry: a bibliometric perspective
This contribution explores how work on Triple Helix (TH) indicators has evolved. Over the past 15 years a body of literature has emerged that brings together a variety of approaches to capture, map or measure the dynamics of TH relationships. We apply bibliographic coupling and co-citation in combination with content analysis to develop a better understanding of this literature. We identify several clusters that can be aggregated to two broad streams of work—one ‘neo-evolutionary’, the other ‘neo-institutional’ in nature. We make this observation both for bibliographic coupling and co-citation analyses which we take as indication of an emerging differentiation of the field. Our content analysis underlines this observation about the ‘two faces’ of the TH. We conclude this paper with a discussion of future opportunities for research. We see great potential in developing the application side of TH indicators