186 research outputs found
Hsp90 governs dispersion and drug resistance of fungal biofilms
Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections
Incremental Prognostic Value of Echocardiographic Strain and Its Association with Mortality in Cancer Patients
Background
Left ventricular global longitudinal systolic strain (GLS) has been shown to be superior to ejection fraction in detecting subclinical dysfunction in patients with cancer and predicting mortality in patients with cardiovascular disease. Cancer-related fatigue is common in the later stages of neoplastic malignancies and may be indicative of nonovert heart failure. The aim of this study was to determine whether reduced strain by echocardiography was associated with all-cause mortality in a cancer cohort.
Methods
In this retrospective study, 120 patients with cancer undergoing or scheduled to undergo chemotherapy and with normal ejection fractions (>50%) underwent assessments of GLS. GLS was derived by averaging all speckle-tracking strain segments of the left ventricle.
Results
Over an average follow-up period of 21.6 ± 13.9 months, 57 of 120 patients died. Univariate predictors of all-cause mortality (P < .10) were Eastern Cooperative Oncology Group performance status, male sex, hematologic malignancy, β-blocker use, and GLS. Multivariate analysis of all significant univariate variables showed that Eastern Cooperative Oncology Group performance status (hazard ratio, 2.12; 95% confidence interval, 1.54–2.92; P < .001), male sex (hazard ratio, 1.93; 95% confidence interval, 1.14–3.27; P = .014), and GLS (hazard ratio, 0.89; 95% confidence interval, 0.81–0.97; P = .012) were significantly and independently associated with mortality. Stepwise analysis of the multivariate associations showed an increase in the global χ2 value after adding GLS (P = .011) to significant clinical variables.
Conclusions
Eastern Cooperative Oncology Group performance status, male sex, and GLS were significantly associated with all-cause mortality in patients with cancer with normal ejection fractions receiving chemotherapy. Adding GLS to significant clinical variables provided incremental prognostic information
Presence of extracellular DNA in candida albicans biofilm matrix and its role in biofilm structure and antifungal susceptibility
Biofilms are structurally complex microconsortia of surface adhering cells embedded within
an extracellular matrix (ECM) composed of substances produced and secreted by cells or
derived from cell lysis. One of the recently discovered bacterial biofilms ECM components is
the extracellular DNA (eDNA). Although the investigation on eDNA in fungal biofilms is
scarce, preliminary studies suggest that eDNA may play a role in biofilms formed by the
opportunistic fungal pathogen Candida albicans. Thus, the present study aimed at
determining the eDNA content of C. albicans SC5314 biofilm ECM and the effect of DNase I
treatment on biofilm formation and biofilm cells susceptibility to antifungals, as indicators of
the role of eDNA in C. albicans biofilms.
Results from our experiments showed that the ECM of C. albicans biofilms formed under
conditions of flow for 48 h contained 3045.4 ± 227.3 ng eDNA/mg of protein. Additionally,
using a microtiter plate model, we observed that different DNase treatments (0.02 - 2 mg/ml)
did not affect further biofilm development by C. albicans adherent cells. However, DNase (>
0.03 mg/ml) promoted a general biomass reduction on C. albicans preformed biofilms.
Finally, DNase (0.13 mg/ml) did not change C. albicans biofilm cells susceptibility to
fluconazole, but increased their susceptibility to amphotericin B and caspofungin, as
indicated by the lower SMIC compared to biofilms grown without DNase.
This work presents evidence for the role of eDNA in C. albicans biofilm integrity and
antifungal resistance consistent with eDNA being a key element of the ECM
Game and player: C. albicans biofilm lifestyle and extracellular DNA
DNA is as a structural component of bacterial biofilms extracellular matrix (ECM). Although evidences have shown that DNA may play a role in C. albicans biofilms, further studies are required to understand the contribution of extracellular DNA (eDNA) in C. albicans biofilm lifestyle. Herein we aimed to determine the eDNA content of C. albicans SC5314 biofilm ECM and the effect of DNase I and exogenous DNA treatments on biofilm formation and biofilm cells susceptibility to antifungals. First, for eDNA estimation in C. albicans biofilm ECM, biofilms were formed under flow conditions for 48 h. ECM was isolated and its DNA and protein contents were determined. Second, DNase (0.02 - 2 mg/ml) and exogenous DNA (10 - 2560 ng/ml) were added at different stages of biofilm development (microtiter plate model under static conditions). The effect of 24 h treatments was evaluated in terms of biofilm biomass by crystal violet assay (A550). Third, for antifungal testing, biofilms (in 96-well plates) were challenged with amphotericin B (0.06 - 16 mg/l), caspofungin (0.008 to 2 mg/l), and fluconazole (4 - 1024 mg/l) alone or in combination with DNase (0.125 mg/ml) or exogenous DNA (320 ng/ml). Sessile minimum inhibitory concentrations (SMIC) were determined at 80 % inhibition compared to drug-free controls using the XTT reduction assay. RPMI medium was used in all the assays. On one hand, C. albicans biofilms ECM contained 3045.4 ± 227.3 ng eDNA/mg of protein. On the other hand, DNase or exogenous DNA treatments did not affect further biofilm development by C. albicans adherent cells. In contrast, DNase (> 0.03 mg/ml) promoted a general biomass reduction on C. albicans preformed biofilms, as indicated by the reduction of A550 compared with the control. Furthermore addition of exogenous DNA (> 160 ng/ml) to preformed biofilms led to an increase in biofilm biomass, similarly assessed by the higher A550 readings compared with control biofilms. Finally, DNase I (0.125 mg/ml) did not change C. albicans biofilm cells susceptibility to fluconazole, but increased their susceptibility to amphotericin B and caspofungin, as indicated by the lower SMIC compared to biofilms grown without DNase. In contrast, exogenous DNA (320 ng/ml) did not affect C. albicans biofilm cells susceptibility against these antifungals
Development of a High-Throughput Candida albicans Biofilm Chip
We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed “nano-biofilms”. The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B). Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip) is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously
Risk Factors and Outcomes of Candidemia Caused by Biofilm-Forming Isolates in a Tertiary Care Hospital
Very few data exist on risk factors for developing biofilm-forming Candida bloodstream infection (CBSI) or on variables associated with the outcome of patients treated for this infection.
METHODS AND FINDINGS: We identified 207 patients with CBSI, from whom 84 biofilm-forming and 123 non biofilm-forming Candida isolates were recovered. A case-case-control study to identify risk factors and a cohort study to analyze outcomes were conducted. In addition, two sub-groups of case patients were analyzed after matching for age, sex, APACHE III score, and receipt of adequate antifungal therapy. Independent predictors of biofilm-forming CBSI were presence of central venous catheter (odds ratio [OR], 6.44; 95% confidence interval [95% CI], 3.21-12.92) or urinary catheter (OR, 2.40; 95% CI, 1.18-4.91), use of total parenteral nutrition (OR, 5.21; 95% CI, 2.59-10.48), and diabetes mellitus (OR, 4.47; 95% CI, 2.03-9.83). Hospital mortality, post-CBSI hospital length of stay (LOS) (calculated only among survivors), and costs of antifungal therapy were significantly greater among patients infected by biofilm-forming isolates than those infected by non-biofilm-forming isolates. Among biofilm-forming CBSI patients receiving adequate antifungal therapy, those treated with highly active anti-biofilm (HAAB) agents (e.g., caspofungin) had significantly shorter post-CBSI hospital LOS than those treated with non-HAAB antifungal agents (e.g., fluconazole); this difference was confirmed when this analysis was conducted only among survivors. After matching, all the outcomes were still favorable for patients with non-biofilm-forming CBSI. Furthermore, the biofilm-forming CBSI was significantly associated with a matched excess risk for hospital death of 1.77 compared to non-biofilm-forming CBSI.
CONCLUSIONS: Our data show that biofilm growth by Candida has an adverse impact on clinical and economic outcomes of CBSI. Of note, better outcomes were seen for those CBSI patients who received HAAB antifungal therapy
Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms
DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.National Institute of Dental & Craniofacial ResearchFundação para a Ciência e
Tecnologia (FCT) - SFRH/BD/28222/2006National Institute of Allergy and
Infectious Disease
Hsp21potentiates antifungal drug tolerance in Candida albicans
Peer reviewedPublisher PD
The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species
Mitochondrial fission mediated by the GTPase dynamin-related protein 1 (Drp1) is an attractive drug target in numerous maladies that range from heart disease to neurodegenerative disorders. The compound mdivi-1 is widely reported to inhibit Drp1-dependent fission, elongate mitochondria, and mitigate brain injury. Here, we show that mdivi-1 reversibly inhibits mitochondrial complex I-dependent O2 consumption and reverse electron transfer-mediated reactive oxygen species (ROS) production at concentrations (e.g., 50 μM) used to target mitochondrial fission. Respiratory inhibition is rescued by bypassing complex I using yeast NADH dehydrogenase Ndi1. Unexpectedly, respiratory impairment by mdivi-1 occurs without mitochondrial elongation, is not mimicked by Drp1 deletion, and is observed in Drp1-deficient fibroblasts. In addition, mdivi-1 poorly inhibits recombinant Drp1 GTPase activity (Ki > 1.2 mM). Overall, these results suggest that mdivi-1 is not a specific Drp1 inhibitor. The ability of mdivi-1 to reversibly inhibit complex I and modify mitochondrial ROS production may contribute to effects observed in disease models. © 2017 Elsevier Inc
Sensor system for precision agriculture smart watering can
The expansion of precision agriculture technology from commercial agriculture to home gardening is highly important due to its economic and health benefits, delivered through a new way of crop production. Additionally, it offers physiological and psychological benefits to the gardeners. The soil degradation and lack of knowledge among gardeners related to the properties of both soil and the pouring water chemical contents results in less efficient production from home plants. In this work, we proposed a new connected sensor system in which smart watering can connect to a wireless sensor network for soil analysis along with the properties of water. The soil condition was measured using thick film pH and moisture sensors. The sensitivity of the pH sensor is 53 ± 2 mV/pH for RuO2 vs Ag/AgCl electrode and is 42 ± 1.26 mV/pH for RuO2 vs carbon in the range of pH 3–8. Depending on the soil properties, the sensors integrated watering can create a suitable pH solution by automatically, mixing the alkaline/acidic solution stored in separate containers in the watering can. This prepared pH-controlled water is then deposited into the plant by the user. Online monitoring of both soil and pouring water chemical content support the gardener to grow plants sustainably
- …