128 research outputs found

    Atomic scale friction studies on single crystal gallium arsenide using atomic force microscope and molecular dynamics simulation

    Get PDF
    This paper provides a fresh perspective and new insights on the nanoscale friction investigated using molecular dynamics simulation and atomic force microscope (AFM) nanoscratch experiments. The work considered Gallium Arsenide, an important III-V direct bandgap semiconductor material residing in the zinc-blende structure as a reference sample material due to its growing usage in 5G communication devices. In the simulations, the scratch depth was tested as a variable in the fine range of 0.5 nm to 3 nm to understand the behaviour of material removal as well as to gain insights into the nanoscale friction. Scratch force, normal force and average cutting forces were extracted from the simulation to obtain two scalar quantities namely, the scratch cutting energy (defined as the work done in removing a unit volume of material) and kinetic coefficient of friction (defined as the force ratio). A strong size effect was observed for scratch depths below 2 nanometres from the MD simulations and about 15 nm from the AFM experiments. A strong quantitative corroboration was obtained between the MD simulations and the AFM experiments in the specific scratch energy and more qualitative corroboration with the pile up and the kinetic coefficient of friction. This conclusion suggested that the specific scratch energy is insensitive to the tool geometry and the speed of scratch used in this investigation but the pile up and kinetic coefficient of friction are dependent on the geometry of the tool ti

    Design and optimisation of process parameters in an in-line CIGS evaporation pilot system

    Get PDF
    Substantial efforts have been made globally towards improving Cu(In,Ga)Se2 thin film solar cell efficiencies with several organisations successfully exceeding the 20% barrier on a research level using the three-stage CIGS process, but commercial mass production of the three-stage process has been limited due to the technological difficulties of scaling-up. An attempt has been made to identify these issues by designing and manufacturing an in-line pilot production deposition system for the three-stage CIGS process which is capable of processing 30 cm × 30 cm modules. The optimisation of the process parameters such as source and substrate temperature, deposition uniformity, flux of copper, indium, gallium and selenium and thickness control has been presented in this investigation. A simplistic thickness distribution model of the evaporated films was developed to predict and validate the designed deposition process, which delivers a comparable simulation compared with the experimental data. These experiments also focused on the optimisation of the temperature uniformity across 30 cm × 30 cm area using a specially designed graphite heating system, which is crucial to form the correct α-phase CIGS in the desired time period. A three-dimensional heat transfer model using COMSOL Multiphysics 4.2a software has been developed and validated with the help of experimental data

    Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant genetic resources (PGR) are the basic raw materials for future genetic progress and an insurance against unforeseen threats to agricultural production. An extensive characterization of PGR provides an opportunity to dissect structure, mine allelic variations, and identify diverse accessions for crop improvement. The Generation Challenge Program <url>http://www.generationcp.org</url> conceptualized the development of "composite collections" and extraction of "reference sets" from these for more efficient tapping of global crop-related genetic resources. In this study, we report the genetic structure, diversity and allelic richness in a composite collection of chickpea using SSR markers, and formation of a reference set of 300 accessions.</p> <p>Results</p> <p>The 48 SSR markers detected 1683 alleles in 2915 accessions, of which, 935 were considered rare, 720 common and 28 most frequent. The alleles per locus ranged from 14 to 67, averaged 35, and the polymorphic information content was from 0.467 to 0.974, averaged 0.854. Marker polymorphism varied between groups of accessions in the composite collection and reference set. A number of group-specific alleles were detected: 104 in Kabuli, 297 in desi, and 69 in wild <it>Cicer</it>; 114 each in Mediterranean and West Asia (WA), 117 in South and South East Asia (SSEA), and 10 in African region accessions. Desi and kabuli shared 436 alleles, while wild <it>Cicer </it>shared 17 and 16 alleles with desi and kabuli, respectively. The accessions from SSEA and WA shared 74 alleles, while those from Mediterranean 38 and 33 alleles with WA and SSEA, respectively. Desi chickpea contained a higher proportion of rare alleles (53%) than kabuli (46%), while wild <it>Cicer </it>accessions were devoid of rare alleles. A genotype-based reference set captured 1315 (78%) of the 1683 composite collection alleles of which 463 were rare, 826 common, and 26 the most frequent alleles. The neighbour-joining tree diagram of this reference set represents diversity from all directions of the tree diagram of the composite collection.</p> <p>Conclusion</p> <p>The genotype-based reference set, reported here, is an ideal set of germplasm for allele mining, association genetics, mapping and cloning gene(s), and in applied breeding for the development of broad-based elite breeding lines/cultivars with superior yield and enhanced adaptation to diverse environments.</p

    Synthesis and photo electrochemical characterization of an extended π-conjugated heteroleptic ruthenium (II) complex

    Get PDF
    A new extended π-conjugate heteroleptic ruthenium(II) complex (m-HRD-1) that contains a 4,4'-bis-2-(5(3,5-di-tert-butylphenyl)thiophene-2-yl)vinyl)2,2'-bipyridine as ancillary ligand, 4,4’-dicaboxy-2,2'-bipyridine as anchoring group, and two thiocyanate ligands in its molecular structure have been designed, synthesized and characterized by CHN, Mass, 1H-NMR, UV-Vis, and fluorescence spectroscopies as well as cyclic voltammetry. Electrochemical and theoretical studies showed that the LUMO of the sensitizer is above TiO2 conduction band and the HOMO is below the redox potential of the electrolyte. This new sensitizer was tested in dye-sensitized solar cells using liquid redox couple (I-/I3-) and its performance was compared to the standard sensitizer N719

    Graphene-like dispersion and strong optical absorption in two-dimensional RP-type Sr3Ti2S7 perovskite

    Get PDF
    Two-dimensional (2D) Ruddlesden–Popper (RP) perovskite alloys have recently become attractive due to many desired physical properties originating from distinct van der Waals-type layered structures. In this work, a novel 2D RP-type Sr3Ti2S7 perovskite material design is proposed by using first-principles calculations. Our results reveal that the 2D Sr3Ti2S7 perovskite possesses dynamically stable structures, direct band structures with a band gap value of 0.86 eV, and a smaller effective mass (0.15/0.25 m0 for electron/hole) than MAPbI3 and phosphorene. More importantly, 2D Sr3Ti2S7 possesses wide optical spectra (from infrared-to ultraviolet-light region) and a higher absorption coefficient (105 cm–1) than MAPbI3, silicon, and MoS2 in the visible-light region. Interestingly, we also find that the ideal Dirac-like linear dispersion can appear near the Fermi level in the electronic band structures when compressive strain is applied. Especially, the Dirac-cone-like band structures can be realized when compressive strain is enhanced to −6%, indicating ultrahigh carrier mobility. These properties make the 2D Sr3Ti2S7 perovskite a promising candidate for future applications in solar cells and optoelectronic devices

    Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.).

    Get PDF
    Extensive and deep root systems have been recognized as one of the most important traits for improving chickpea (Cicer arietinum L.) productivity under progressively receding soil moisture conditions. However, available information on the range of variation for root traits is still limited. Genetic variability for the root traits was investigated using a cylinder culture system during two consecutive growth seasons in the mini-core germplasm collection of ICRISAT plus several wild relatives of chickpea. The largest genetic variability was observed at 35 days after sowing for root length density (RLD) (heritability, h 2 = 0.51 and 0.54) across seasons, and followed by the ratio of plant dry weight to root length density with h 2 of 0.37 and 0.50 for first and second season, respectively. The root growth of chickpea wild relatives was relatively poor compared to C. arietinum, except in case of C. reticulatum. An outstanding genotype, ICC 8261, which had the largest RLD and one of the deepest root system, was identified in chickpea mini-core germplasm collection. The accession ICC 4958 which was previously characterized as a source for drought avoidance in chickpea was confirmed as one with the most prolific and deep root system, although many superior accessions were also identified. The chickpea landraces collected from the Mediterranean and the west Asian region showed a significantly larger RLD than those from the south Asian region. In addition, the landraces originating from central Asia (former Soviet Union), characterized by arid agro-climatic conditions, also showed relatively larger RLD. As these regions are under-represented in the chickpea collection, they might be interesting areas for further germplasm exploration to identify new landraces with large RLD. The information on the genetic variability of chickpea root traits provides valuable baseline knowledge for further progress on the selection and breeding for drought avoidance root traits in chickpea

    Low-temperature titania-graphene quantum dots paste for flexible dye-sensitised solar cell applications

    Get PDF
    Graphene possesses excellent mechanical strength and chemical inertness with high intrinsic carrier mobility and superior flexibility making them exceptional candidates for optoelectronic applications. Graphene quantum dots (GQDs) derived from graphene domains have been widely explored to study their photoluminescence properties which can be tuned by size. GQDs are biocompatible, low cytotoxic, strongly luminescent and disperse well in polar and non-polar solvents showing bright promise for the integration into devices for bioimaging, light emitting and photovoltaic applications. In the present study, graphene quantum dots were synthesized by an electrochemical cyclic voltammetry technique using reduced graphene oxide (rGO). GQDs have been incorporated into binder free TiO2 paste and studied as a photoelectrode material fabricated on ITO/PEN substrates for flexible dye sensitized solar cells (DSSCs). DSSC based on GQDs-TiO2 exhibited open circuit output potential difference (Voc) of 0.73 V, and short circuit current density (Jsc) of 11.54 mA cm-2 with an increment in power conversion efficiency by 5.48 %, when compared with those with DSSC build with just a TiO2 photoanode (open-circuit output potential difference (Voc) of 0.68 V and short circuit density (Jsc) of 10.67 mA cm-2). The results have been understood in terms of increased charge extraction and reduced recombination losses upon GQDs incorporation

    Exploiting genomic resources for efficient conservation and utilization of chickpea, groundnut, and pigeonpea collections for crop improvement

    Get PDF
    Both chickpea and pigeonpea are important dietary source of protein, while groundnut is one of the major oil crops. Globally, ~1.1 million grain legume accessions are conserved in genebanks, of which, ICRISAT genebank holds ~50,000 accessions of cultivated species and wild relatives of chickpea, pigeonpea, and groundnut from 133 countries. These genetic resources are reservoirs of many useful genes for the present and future crop improvement programs. Representative subsets in the form of core and mini core collections have been used to identify trait-specific genetically diverse germplasm for use in breeding and genomic studies in these crops. Chickpea, groundnut and pigeonpea have moved from ‘orphan’ to ‘genomic resources rich crops’. The chickpea and pigeonpea genomes have been decoded, and the sequences of groundnut genome will soon be available. With the availability of these genomic resources, the germplasm curators, breeders and molecular biologists will have abundant opportunities to enhance the efficiency of genebank operations, mine allelic variations in germplasm collection, identify genetically diverse germplasm with beneficial traits, broaden the cultigen’s genepool, and accelerate the cultivar development to address new challenges to production, particularly with respect to climate change and variability. Marker-assisted breeding approaches have already been initiated for some traits in chickpea and groundnut, which should lead to enhanced efficiency and efficacy of crop improvement. Resistance to some pests and diseases has been successfully transferred from wild relatives to cultivated species
    • …
    corecore