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Abstract

Graphene possesses excellent mechanical strength and chemical inertness with high intrinsic 
carrier mobility and superior flexibility making them exceptional candidates for optoelectronic 
applications. Graphene quantum dots (GQDs) derived from graphene domains have been widely 
explored to study their photoluminescence properties which can be tuned by size. GQDs are 
biocompatible, low cytotoxic, strongly luminescent and disperse well in polar and non-polar 
solvents showing bright promise for the integration into devices for bioimaging, light emitting 
and photovoltaic applications. In the present study, graphene quantum dots were synthesized by 
an electrochemical cyclic voltammetry technique using reduced graphene oxide (rGO). GQDs 
have been incorporated into binder free TiO2 paste and studied as a photoelectrode material 
fabricated on ITO/PEN substrates for flexible dye sensitized solar cells (DSSCs). DSSC based on 
GQDs-TiO2 exhibited open circuit output potential difference (Voc) of 0.73 V, and short circuit 
current density (Jsc) of 11.54 mA cm-2 with an increment in power conversion efficiency by 5.48 
%, when compared with those with DSSC build with just a TiO2 photoanode (open-circuit output 
potential difference (Voc) of  0.68 V and short circuit density (Jsc) of 10.67 mA cm-2). The results 
have been understood in terms of increased charge extraction and reduced recombination losses 
upon GQDs incorporation.
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1. Introduction

With the advent of nanotechnology, advanced carbonaceous materials of nanoscale size 

with unique properties were discovered in succession, with buckminsterfullerene C60 in 1985,1 

carbon nanotubes in 1991,2 and most recently graphene in 2004.3 Graphene is a two dimensional 

material possessing excellent mechanical strength,4 and chemical inertness with high intrinsic 

carrier mobility,5 and excellent flexibility.6 Graphene has been used as an electron acceptor 

material in photovoltaics due to its high electron mobility.7 The dispersion of graphene is poor in 

commonly used solvents and this has been an inhibiting factor for the practical applications of 

graphene.8 In the past few years, there has been enthusiasm to convert graphene to 0-dimension 

graphene quantum dots (GQDs) and to study phenomena such edge and size effects on GQD 

properties.9 These GQDs are usually biocompatible, strongly luminescent and can dispersed well 

in various solvents being promising prospects for integration into bioimaging devices,10 light 

emitting,11 and photovoltaic applications.12 

The utilization of graphene for different applications could be facilitated by tuning the 

band-gap of graphene which is achieved by converting them into GQDs. It has been reported that 

the graphene-TiO2 composite exhibits high photoconversion efficiency. To explore GQDs 

properties such as quantum confinement, edge effects, strong luminescence and many others, we 

were interested studying a GQDs-TiO2 composite as photoanode in polymer based flexible 

DSSC. In addition to these, the GQDs acts as a good electron acceptor, exhibit weak molecular 

interaction for dye molecule and co-sensitization improves charge collection efficiencies.13  

Many synthetic procedures have been reported for the synthesis of GQDs in the literature. 

Khalid Habiba et al. reported the pulse laser synthesis of GQDs by 1024 nm pulsed Nd:YAG 
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laser using benzene as precursor material in presence of a NiO catalyst and investigated their 

suitability as biomarkers.14 Lijie Kou et al. reported the synthesis by breaking the acid 

functionalization of double walled carbon nanotubes into graphene nanosheets and later into 

GQDs for application in flexible memory devices.15 Yan Li et al. developed an efficient and 

direct preparation of GQDs by electrochemical cyclic voltammetry using graphene as a 

precursor.16 Yongqiang Dong et al. synthesized GQDs by a simple method where in citric acid 

was pyrolyzed at 200 °C for 30 minutes. The final yield of the GQDs reported in this study was 

about 10 %.17 Xin Yan et al. communicated the synthetic route of synthesizing GQDs by using a 

polyphenylene dendritic precursor.18 Shoujun Zhu et al. described the synthesis of GQDs by a 

solvothermal route using graphene oxide as a starting material for bioimaging of MG-63 cells.19 

Jianhua Shen et al. and Dengyu Pan et al reported the synthesis of GQDs by a hydrothermal 

method using graphene oxide as the starting material.20 Libin Tang et al. described the GQDs 

synthesis by microwave irradiation using glucose and demonstrated their application in 

conversion of blue light into white light.21 S. Schnez et al. demonstrated the synthesis of GQDs 

by designing the desired shape and size using electron beam lithography for studying transport 

properties.22 Ponomarenka et al, fabricated a single electron transistor using a graphene quantum 

dot of 30 nm synthesized by electron beam lithography.23 It is evident that poor yield and 

expensive method were the major disadvantages in the preparation of GQDs.  

The first application of GQDs in photovoltaics has been demonstrated in poly (3-hexylthiophene) 

(P3HT) based organic solar cells with the efficiency of 1.28 %.16 GQDs are also reported in 

DSSCs, there are many reports available on the incorporation of GQDs in the preparation of 

photoanode for DSSC which are summarised in detail in Table 1. 
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To the best of our knowledge no reports are available on the incorporation of GQDs in 

binder free TiO2 paste for application of flexible DSSCs. In this work, we report on the synthesis 

of the graphene quantum dots by the electrochemical cyclic voltammetry technique.  Binder free 

TiO2 paste is prepared using GQDs and tert-butyl alcohol in dilute acidic medium. GQDs-TiO2 

paste has been used in the fabrication of flexible polymer DSSC and exhibited an efficiency of 

4.41 %.

2. Experimental Techniques

2.1. Synthesis of Graphene oxide

In the present study all the chemicals were procured from Sigma-Aldrich and Fisher and 

used without any further purification. Graphene oxide (GO) was synthesized by the modified 

Hummer’s method.24 In this method, 2 g of graphite flakes were mixed with 1g of NaNO3 and 

treated with 100 mL of concentrated H2SO4 at 0 °C for 30 min. Then 12 g of KMnO4 was added 

to this solution while the temperature of the solution was maintained below 30 °C. After 

refluxing for 6 h, the mixture was diluted with DI water (500 mL) containing 10 mL of 30 % 

H2O2 to neutralize the excess KMnO4. Finally, the mixture was washed several times with 1.0 L 

of 1 M HCl and followed by deionized water. After drying at 60 °C overnight, GO was re-

dispersed in DI water, sonicated for 10 min and centrifuged at 4000 rpm to remove unexfoliated 

GO. The GO solution was drop casted on a p-Si/SiO2 substrate and placed horizontal tube 

furnace equipped with Ar-H2 gas supply and annealed at 600 °C with heating rate of 30 °C/min 

to transform the material into reduced graphene oxide (rGO). 

2.2. Synthesis of Graphene Quantum Dots
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GQDs were synthesized using the electrochemical cyclic voltammetry technique.7 The 

rGO film on the p-Si/SiO2 substrate was used as the working electrode and platinum wire as the 

counter electrode. The reference electrode was E vs (Ag/AgCl)/V and the electrolyte was 0.5 M 

sodium phosphate buffer solution of pH 6.8. The potential window of the voltammogram 

(Metrohm Autolab PGSTAT30) was recorded from -3.0 V to 3.0 V for 2000 cycles. After the 

completion of cyclic voltammetry cycles, the washings of the rGO substrate and the electrolyte 

were transferred to a MD 8000-10000 dialysis membrane. The dialysis was carried for two days 

with frequently changing DI water. Finally, the solution was concentrated by freeze-drying.

2.3. Procedure for assembling the DSSC 

Room temperature binder-free TiO2 paste,25 was prepared by refluxing 0.2 g of Degussa 

P25 TiO2 nanoparticles and 1.4 mL of tert-butyl alcohol in 0.2 mL of 0.05 M HNO3 medium 

with addition of 0.5 mL of the GQDs dispersion. The contents were stirred for 8 h at room 

temperature. The TiO2 films are prepared by doctor blade technique on ITO/PEN films (Peccells, 

Japan). After each coating, the films were subjected to flash annealing for 2 min at 175 °C. 

Similarly, TiO2 films were prepared from GQDs free TiO2 paste which was prepared by adding 

0.5 mL of deionised water instead of GQDs solution. Then the films were soaked in 0.1 mM 

N719 in absolute ethanol (Dyesol) dye bath for 20 h. 

The DSSC was assembled by joining the photoanode with platinum coated ITO/PEN 

counter electrode (Peccells, Japan) using 25 µm Surlyn (Solarnix) as the spacer. The electrolyte 

was injected from the platinum face through a hole that was drilled manually before assembling 

the DSSC. The electrolyte was comprised of 0.4 M lithium iodide (LiI), 0.4 M 
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tetrabutylammoniumiodide, 0.04 M iodine, and 0.3 M methylbenzimidazole in a mixture of 

acetonitrile and 3-methoxy propionitrile (MPN) of ratio of 1:1 (v/v).

2.4. Characterisation Techniques

The phase purity and crystallographic structure of GO, rGO and GQDs were determined 

using an automated Rigaku D/max 2400 X-ray diffractometer with rotating anode using Cu Kα 

radiation (0.15416 nm). The graphene oxide was dispersed on the standard copper metal sample 

holder and the measurement was recorded from 5 ° to 30 ° at a scan rate of 3 °/min. Absorbance 

spectra were recorded using Shimadzu 2450 UV-Vis spectrophotometer and photoluminescence 

excitation and emission spectra were recorded using HORIBA Jobin Yvon FluoroLog 3 

fluorometer. The lifetime decay measurements were obtained by using Edinburgh Instruments 

OD470 single-photon counting spectrometer using a 371 nm picosecond pulse diode laser with a 

high-speed red detector. Raman spectra were collected on Horiba Jobin-YvonT-6400 Raman 

microprobe with a Coherent Innova99 Ar+ laser at a wavelength of 514.5 nm. Structural and 

morphology investigations are carried using a transmission electron microscope JEOL JEM-

2200FS operated at 200 kV and a scanning electron microscopy FESEM JEOL JSM-7500F, 

respectively. J-V measurements were carried with Newport 92250A-1000 Solar Simulator under 

AM1.5G conditions. The electrochemical impedance spectroscopy (EIS) were carried out using 

Metrohm Autolab PGSTAT30 with amplitude signal of 50 mV in the frequency range of 1 MHz 

to 0.1 Hz at -0.7 V in the dark. 

3. Results and Discussions

3.1. Structural, optical and morphological characterisation of graphene quantum dots

3.1.1. X-ray Diffraction studies
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Fig. 1 shows XRD profiles of the GO (green), rGO (black) and GQDs (red) samples. The 

peak at 2θ = 9.48 ° (d = 0.93 nm) in the green curve corresponding to the (001) orientation and 

confirms the presence of GO.26 On the other hand, there is a broad peak at 2θ = 26.3 ° (d = 0.34 

nm) in the black curve corresponding to the (002) orientation revealing that the graphene oxide 

lost oxygen molecules during the transformation into reduced form.27 In the XRD plot for GQDs 

(red curve), the position of (002) peak is shifted to lower 2θ to 26.11 ° (d = 0.34 nm) and the 

peak is also broadened when compared to rGO (black curve). When compared to graphene, 

GQDs have a broader XRD peak and this indicates that an electrochemical process has 

introduced more active sites on the GQD surface.16 

Fig. 1:  X-ray diffraction (XRD) pattern of GO [2θ = 9.48° corresponds to the (001) planes], rGO 
[2θ = 26.3° corresponds to the (002) planes] and GQDs (2θ = 26.11° corresponds to the (002) 
planes].
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3.1.2. Raman Spectroscopy

Raman scattering is a strong, powerful non-invasive and essential tool to characterize 

graphite and graphene related materials. Graphene and its related materials are allotrope forms of 

carbon. From the molecular perspective, these carbon allotropes are composed with C- C bonds. 

Nonetheless, in these allotropes, the hybridization of these bonds can differ. Raman spectroscopy 

is a powerful and sensitive technique for the characterisation of carbon allotropes and can detect 

slight modifications in C- C bonds.28 In Fig. 2, the peak at 1351 cm-1 is related to the D-band and 

corresponds to the A1g mode which represents the vibrations of carbon atoms with dangling 

bonds of disordered graphite. The presence of the G-band at 1592 cm-1 corresponds to the E2g 

mode of graphite which in turn is related to the vibration of the sp2 bonded carbon atoms. From 

comparison of the Raman spectrum of GO and rGO it is evident that the thermal treatment of GO 

results in the change in intensities of the D-band and the G-band pre- and post-treatment. The 

ratio of relative intensities of D band and G band in GO was 1.24 indicating the presence of high 

proportion of defects and edge functional groups.29
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Fig. 2: Raman spectrum of GO and rGO represents D band at 1351 cm-1 and G band at 1592 cm-

1.

After thermal treatment, the G-band has become broader compared to GO and the ratio of 

the D/G intensity of rGO has been slightly increased to 1.38.  This phenomenon can be explained 

due to the change in the sp2 domains due to oxidation and exfoliation, and partially disordered 

graphite crystal structure of graphene films after reduction.30

3.1.3. UV-Vis Absorption spectroscopy

Fig. 3 shows the UV-Vis spectrum of the GQDs solution. The absorbance is recorded in 

the range of 200 nm to 500 nm. In the spectrum, a shoulder at 270 nm (4.55 eV) is observed 

because of the interband transitions of the graphene sheet and excitonic effects.31 This is a 

characteristic feature of the GQDs.

Fig. 3: UV-Vis absorption spectrum of GQDs exhibiting characteristic shoulder at 270nm.
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3.1.4. Photoluminescence spectroscopy

Fig. 4 shows the photoluminescence (PL) spectra of GQDs. The sample is subjected to 

excitation in the range of 300 nm to 372 nm with interval of 8 nm. The emission peaks are 

observed in the range 420 nm to 450 nm. With the increase in the excitation wavelength the 

photoluminescence peak increases in intensity and shifts to higher wavelength, reaches a 

maximum at 430 nm corresponding to the excitation wavelength of 340 nm. For excitation 

wavelength greater than 340 nm, the PL emission peak decreases in intensity and shifts to higher 

wavelength range. It has been reported that the recombination of electron-hole pairs in the sp2 

clusters leads to PL emission in the carbonous materials,32 and PL emission of the GQDs follows 

an excitation dependent feature which is commonly observed in carbon materials.19

Fig. 4: Photoluminescence spectra of GQDs in water excited at wavelengths from 300 nm to 372 
nm with intervals of 8 nm.
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In Fig. 5, the decay of the emissive state in GQDs is studied by time resolved 

luminescence fluorescence decay after excitation with a wavelength of picosecond 371 nm laser 

pulse. The photoluminescence decay is biexponential having a short (τ1) and long (τ2) lifetime 

components.33 The multi-exponential life time is associated with a variety of factors that can 

include band to band transitions, the presence of defect sites, and edge functionalities.34 The 

average lifetime decay value is found to be 4.8 ns which is well comparable to the literature 

reports.35,36

τ1=1.98±0.03 ns (40%)…………(3)

τ2=7.37±0.05 ns (60%)…………(4)

Average lifetime = 4.8 ns

Fig. 5: Life time decay studies of GQDs in DI water.
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3.1.5. Morphology studies by SEM and HR-TEM of Graphene quantum dots

The rGO SEM micrographs are shown in Fig. 6. Free standing rGO are obtained after thermal 

reduction of GO. 

Fig. 6: SEM micrographs of rGO a) lower magnification b) higher magnification images, ripples 
on the surface of rGO indicate the presence of surface defects due to oxygen vacancies.

b

a
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The formation of ripples on surface of the rGO provides evidence of surface defects which are 

created by the oxygen vacancies and supported by the presence of a D-band in the Raman spectra 

(Fig. 2).37  HR-TEM is employed to investigate the size distribution of GQDs. The samples are 

prepared by pipetting few micro litres of GQDs solution on a mica grid. In Fig. 7, HR-TEM 

micrographs reveals that the GQDs are about 2-3 nm in size and the fringe width is 0.21 nm 

which is in agreement with literature.38 

Fig. 7: HRTEM micrographs of GQDs and inset indicate the GQDs of sizes of 2-3 nm.
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3.2. Photovoltaic properties of GQDs based polymer flexible DSSC

The J-V characteristics of champion TiO2 cells and GQDs-TiO2 cells prepared on a PEN/ITO 

flexible foil are shown in Fig. 8. The solar cell characteristics of these devices are summarised in 

Table. 1. The results clearly shows that DSSC fabricated using GQDs-TiO2 paste displays a 

better performance with improved short circuit current density (Jsc) of 11.54 mA cm-2, better 

open circuit output potential difference (Voc) of 0.73 V and power conversion efficiency (PCE) 

of 4.43 % when compared to GQDs- free TiO2 paste. Although the overall conversion efficiency 

increase appears less, there has been significant increase in both the photocurrent and photo 

output potential difference parameters of the solar cell. It is evident that incorporation of GQDs 

into TiO2 increases the photovoltaic parameters of the cells. 

Fig. 8: J-V characteristics of flexible solar cell made with binder free GQD-TiO2 paste (red curve 
in presence of light and black in dark condition) and TiO2 paste (dark cyan curve in presence of 
light and blue in the dark) recorded under simulated AM1.5G.



ACCEPTED MANUSCRIPT

Table.1: Photovoltaic performances of DSSCs devices fabricated with GQDs as photoelectrode.

S.
N
o.

Subst
rate 
used

Structure Method for 
GQDs

Photoa
node 

process 
tempera

ture

Voc
(V)

Jsc
(mA cm-

2)

FF 

(%

)

η (%) R
ef

1 FTO 
glass

FTO/TiO2/GQDs/D719/I-:I3
-

/Pt/FTO
Spin 

coating
450 °C 0.77 15.20 75.

0
7.95 39

2 FTO 
glass

FTO/TiO2/GQDs/N719/ I-:I3
-

/Pt/FTO
Physical 

adsorption
500 °C 0.66 14.07 59.

0
6.1 40

3 FTO 
glass

FTO/ZnO/N719/GQDs/ I-:I3
-

/Pt/FTO
Physical 

adsorption
450 °C 0.71 1.29 66.

3
0.6 41

4 FTO 
glass

FTO/TiO2/GQDs/N3/ I-:I3
-

/Pt/FTO
Physical 

adsorption
450 °C 0.58 5.58 66.

0
2.15 42

5 FTO 
glass

FTO/TiO2/GQDs/N719/ I-:I3
-

/Pt/FTO
Electrophor
etic filling

450 °C 0.68 11.72 78.
0

6.22 43

6 FTO 
glass

FTO/TiO2/N719/GQDs/ I-:I3
-

/Pt/FTO
Physical 

adsorption
450 °C 0.77 16.64 63.

0
7.96 44

7 FTO 
glass

FTO/GQDs/N719/ I-/I3
-

/Pt/FTO
Physical 

adsorption
500 °C 0.79 22.6 70.

0
11.7 45

8 ITO 
glass

ITO/Pani-GQDs/N719/ I-/I3
-

/Al
Drop 

casting
- 0.65 7.35 65.

4
3.12 46

9 ITO 
glass

ITO/PPy-GQDs/N719/ I-/I3
-

/Graphite/ITO
Drop 

casting
- 0.54 7.80 50.

0
2.09 47

10 ITO/
PEN

ITO/ TiO2/ N719/ I-/I3
-

/Pt/ITO
Doctor 
blade

175 °C 0.68 10.67 57.
7

4.2 25

11 ITO/
PEN

ITO/ GQDs-TiO2/ N719/ I-

/I3
-/Pt/ITO

Doctor 
blade

175 °C 0.73 11.54 52.
7

4.4 *

*this work

3.3. Electrochemical Impedance Spectroscopy (EIS)

In all electrical devices, the transport and recombination processes of electrons at various 

interfaces can be studied using EIS. In DSSC, mainly three interfaces (TiO2/electrolyte, 

CE/electrolyte and electrolyte diffusion) play important roles in the device performance. In the 

Nyquist plots, the first semi-circle corresponds to the counter electrode/electrolyte interface, the 

second semi-circle is related to the charge transfer resistance at the TiO2/electrolyte interface and 



ACCEPTED MANUSCRIPT

third semi-circle is due to the electrolyte/electrolyte diffusion.48 In the Nyquist plot (Fig. 9), the 

radius of the semi-circles was different.

 

Fig. 9: Nyquist plots of GQDs-TiO2 (red colour) and TiO2 (black colour) cells measured at -0.7 
V in dark condition.

The charge transfer resistance of TiO2/electrolyte is low in the case of GQDs-TiO2 paste and 

high in the case of TiO2 paste. It is evident that the recombination of electrons in the 

TiO2/electrolyte interface is diminished with the incorporation of GQDs in the TiO2 paste. The 

life time of the electron is calculated using the expression from the Bode phase shown in Fig. 10, 

τ = 1/2πfmax…………(5)

where τ is the lifetime of the electron in the TiO2/electrolyte interface and fmax is the maxima of 

the middle frequency peak in the Bode plots.49 The life time of the electron in the GQDs-

TiO2/interface is 68.05 ms whereas, in TiO2/electrolyte it is 44.28 ms. From the life time 

measurements, it is observed that GQDs-TiO2 exhibited longer life-time than TiO2. The longer 

electron life-time was attributed to reduced recombination between TiO2 and the electrolyte 
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interface. Also, longer life-time is also related with improved charge transport.50 Thus longer life 

times of electrons in DSSC are the key parameters in the improvement in the Jsc and Voc.51

Fig. 10: Bode-modulus phase plots of GQDs-TiO2 and TiO2 cells recorded at -0.7 V under dark 

conditions.

4. Conclusions 

In summary, the experiment of adding graphene quantum dots in room temperature 

binder free TiO2 paste has yielded promising results. Although limited improvement was 

observed in photoconversion efficiency (4.2 % to 4.43 %), relatively better photocurrent and 

photo output potential difference increase has been observed. Further experiments carried out to 

measure the impedance spectroscopy have shown increase in life time (44.28 ms to 68.05 ms). 

GQDs have been prepared by electrochemical cyclic voltammetry technique using reduced 

graphene oxide as starting material. By using GQDs, the room temperature binder free TiO2 

paste was prepared with tert-butyl alcohol in dilute acidic medium and films were made by 
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doctor blade method on ITO coated PEN substrates. These results clearly indicate that GQDs 

plays a significant role in the performance of the DSSC and has plenty of room for improvement 

of the photoconversion parameters. This work leads to a promising application of GQDs in the 

hybrid photovoltaics.
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Highlights

 Graphene quantum dots (GQDs) were prepared by electrochemical cyclic voltammetry 
technique using reduced graphene oxide as starting precursor.

 GQDs-TiO2 films are prepared by doctor blade method.
 The GQDs-TiO2 based flexible polymer DSSC exhibited good photo conversion 

parameters. 
 Further modification in the GQDs-TiO2 film preparation can lead GQDs as a promising 

material in hybrid photovoltaics. 
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