179 research outputs found

    Mechanical, Electrical, and Magnetic Properties of Ni Nanocontacts

    Get PDF
    The dynamic deformation upon stretching of Ni nanowires as those formed with mechanically controllable break junctions or with a scanning tunneling microscope is studied both experimentally and theoretically. Molecular dynamics simulations of the breaking process are performed. In addition, and in order to compare with experiments, we also compute the transport properties in the last stages before failure using the first-principles implementation of Landauer's formalism included in our transport package ALACANT.Comment: 5 pages, 6 figure

    Transport in magnetically ordered Pt nanocontacts

    Get PDF
    Pt nanocontacts, like those formed in mechanically controlled break junctions, are shown to develop spontaneous local magnetic order. Our density functional calculations predict that a robust local magnetic order exists in the atoms presenting low coordination, i. e., those forming the atom-sized neck. In contrast to previous work, we thus find that the electronic transport can be spin-polarized, although the net value of the conductance still agrees with available experimental information. Experimental implications of the formation of this new type of nanomagnet are discussed.Comment: 4 pages, 3 figure

    Modeling contact formation between atomic-sized gold tips via molecular dynamics

    Get PDF
    The formation and rupture of atomic-sized contacts is modelled by means of molecular dynamics simulations. Such nano-contacts are realized in scanning tunnelling microscope and mechanically controlled break junction experiments. These instruments routinely measure the conductance across the nano-sized electrodes as they are brought into contact and separated, permitting conductance traces to be recorded that are plots of conductance versus the distance between the electrodes. One interesting feature of the conductance traces is that for some metals and geometric configurations a jump in the value of the conductance is observed right before contact between the electrodes, a phenomenon known as jump-to-contact. This paper considers, from a computational point of view, the dynamics of contact between two gold nano-electrodes. Repeated indentation of the two surfaces on each other is performed in two crystallographic orientations of face-centred cubic gold, namely (001) and (111). Ultimately, the intention is to identify the structures at the atomic level at the moment of first contact between the surfaces, since the value of the conductance is related to the minimum cross-section in the contact region. Conductance values obtained in this way are determined using first principles electronic transport calculations, with atomic configurations taken from the molecular dynamics simulations serving as input structures.Comment: 6 pages, 4 figures, conference submissio

    Absence of magnetically-induced fractional quantization in atomic contacts

    Get PDF
    Using the mechanically controlled break junction technique at low temperatures and under cryogenic vacuum conditions we have studied atomic contacts of several magnetic (Fe, Co and Ni) and non-magnetic (Pt) metals, which recently were claimed to show fractional conductance quantization. In the case of pure metals we see no quantization of the conductance nor half-quantization, even when high magnetic fields are applied. On the other hand, features in the conductance similar to (fractional) quantization are observed when the contact is exposed to gas molecules. Furthermore, the absence of fractional quantization when the contact is bridged by H_2 indicates the current is never fully polarized for the metals studied here. Our results are in agreement with recent model calculations.Comment: 4 pages, 3 figure

    Formation of a Metallic Contact: Jump to Contact Revisited

    Get PDF
    The transition from tunneling to metallic contact between two surfaces does not always involve a jump, but can be smooth. We have observed that the configuration and material composition of the electrodes before contact largely determines the presence or absence of a jump. Moreover, when jumps are found preferential values of conductance have been identified. Through combination of experiments, molecular dynamics, and first-principles transport calculations these conductance values are identified with atomic contacts of either monomers, dimers or double-bond contacts.Comment: 4 pages, 5 figure

    Observation of a parity oscillation in the conductance of atomic wires

    Get PDF
    Using a scanning tunnel microscope or mechanically controlled break junctions, atomic contacts of Au, Pt and Ir are pulled to form chains of atoms. We have recorded traces of conductance during the pulling process and averaged these for a large amount of contacts. An oscillatory evolution of conductance is observed during the formation of the monoatomic chain suggesting a dependence on even or odd numbers of atoms forming the chain. This behaviour is not only present in the monovalent metal Au, as it has been previously predicted, but is also found in the other metals which form chains suggesting it to be a universal feature of atomic wires

    Mechanical annealing of metallic electrodes at the atomic scale

    Get PDF
    The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G05G_{0} in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nano-tribology or scanning probe microscopies

    Dynamic bonding of metallic nanocontacts: Insights from experiments and atomistic simulations

    Full text link
    The conductance across an atomically narrow metallic contact can be measured by using scanning tunneling microscopy. In certain situations, a jump in the conductance is observed right at the point of contact between the tip and the surface, which is known as "jump to contact" (JC). Such behavior provides a way to explore, at a fundamental level, how bonding between metallic atoms occurs dynamically. This phenomenon depends not only on the type of metal but also on the geometry of the two electrodes. For example, while some authors always find JC when approaching two atomically sharp tips of Cu, others find that a smooth transition occurs when approaching a Cu tip to an adatom on a flat surface of Cu. In an attempt to show that all these results are consistent, we make use of atomistic simulations; in particular, classical molecular dynamics together with density functional theory transport calculations to explore a number of possible scenarios. Simulations are performed for two different materials: Cu and Au in a [100] crystal orientation and at a temperature of 4.2 K. These simulations allow us to study the contribution of short- and long-range interactions to the process of bonding between metallic atoms, as well as to compare directly with experimental measurements of conductance, giving a plausible explanation for the different experimental observations. Moreover, we show a correlation between the cohesive energy of the metal, its Young's modulus, and the frequency of occurrence of a jump to contactW. Dednam thanks Dr. A. E. Botha for helpful discussions and acknowledges support from the National Research Foundation of South Africa through the Scarce Skills Masters scholarship funding programme (Grant Unique Number 92138). This work is supported by the Generalitat Valenciana through Grant Reference PROMETEO2012/011 and MINECO under Grant No. FIS2013-47328, by European Union structural funds and the Comunidad de Madrid Programs S2013/MIT-3007 and P2013/MIT-2850. This work is also part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organisation for Scientific Research (NWO
    • …
    corecore