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Abstract. The formation and rupture of atomic-sized contacts is modelled by means of
molecular dynamics simulations. Such nano-contacts are realized in scanning tunnelling
microscope and mechanically controlled break junction experiments. These instruments
routinely measure the conductance across the nano-sized electrodes as they are brought
into contact and separated, permitting conductance traces to be recorded that are plots
of conductance versus the distance between the electrodes. One interesting feature of the
conductance traces is that for some metals and geometric configurations a jump in the value of
the conductance is observed right before contact between the electrodes, a phenomenon known
as jump-to-contact. This paper considers, from a computational point of view, the dynamics
of contact between two gold nano-electrodes. Repeated indentation of the two surfaces on each
other is performed in two crystallographic orientations of face-centred cubic gold, namely (001)
and (111). Ultimately, the intention is to identify the structures at the atomic level at the
moment of first contact between the surfaces, since the value of the conductance is related to
the minimum cross-section in the contact region. Conductance values obtained in this way are
determined using first principles electronic transport calculations, with atomic configurations
taken from the molecular dynamics simulations serving as input structures.

1. Introduction
The microelectronics industry faces a great challenge if it is to continue the trend that has
characterized its success over the last few decades [1]. The size of the gate in a transistor is now
approaching a few nm in dimension and new strategies must be devised to achieve smaller sizes.
Nanotechnology is a promising field and potentially offers a solution to the above-mentioned
problem. In this connection, one of the most important tools both in the development and in
the characterization of systems at the nano-scale is the scanning tunnelling microscope (STM)
[2]. With the aid of an STM or mechanically controllable break-junction (MCBJ), another
related technique, we can study the electronic transport in few-atom systems [3]. Such studies
typically require two electrodes of the same metal and a piezo system to join and separate
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the electrodes with subatomic precision. By also connecting a battery across the electrodes,
the current through the nano-contact can be measured, usually in units of the quantum of
conductance (G0 = 2e2/h) [4].

The electronic transport through atomic-sized contacts can be interpreted from a plot of
the measured conductance versus the displacement between the electrodes. Fig. 1 shows
experimental data for gold electrodes at 4.2K; the blue curve corresponds to separation of
the electrodes, and the red curve to the process of bringing them into contact. These curves
are usually referred to as conductance traces. The insets in the figure help to visualise the
contact formation and rupture processes. Moreover, the traces in the figure exhibit a jump in
conductance [5] that is close to 1 G0 in value. In this case, the rupture trace corresponds to a
transition from a monatomic contact to a complete loss of contact. In the case of the formation
trace we observe a jump in the conductance that corresponds to a transition from tunnelling
current to first atomic contact [6].

Figure 1. (Colour online) Experimental
conductance measurements recorded at 4.2 K
using gold electrodes. The insets illustrate the
geometry of the electrodes as contact is made
or broken.

A disadvantage of the above experimental techniques is the difficulty of imaging the electrodes
at atomic resolution. Therefore, theoretical modelling can prove useful in obtaining more
information about the geometry of the electrodes and the mechanism of contact formation.

2. Theory
Molecular dynamics (MD) simulations [7] based on empirical potentials can serve to model nano-
contact formation and rupture. However, MD relies on interatomic potentials that are fitted to
a limited number of parameters of the material. So, doubts remain as to the reliability of the
potentials when systems are taken to situations far away from the range where the parameters
have been fitted. Also, there is no description of the electrons in MD and it is thus not possible
to obtain information such as the conductance of the nano-contacts.

On the other hand, DFT calculations [8] have the advantage of being able to describe both
the nuclei and the electrons in the system, with the use of certain approximations, but without
the need of fitting parameters. Electronic transport calculations based on DFT permit the
conductance to be obtained to a high level of accuracy in materials such as gold [9]. However,
these calculations are computationally costly and systems of up to only a few tens of atoms can
be conveniently handled.

We use a combination of these two methods to study the dynamical formation and breaking
of gold nano-contacts and to calculate the conductance through the most probable structures at
the moment of first contact.

The MD code LAMMPS [10, 11] is used to perform the dynamical calculations. The
embedding atom potential [12] for gold developed by Zhou et al. [13] serves to model the
interactions between the atoms. This potential has been fitted to parameters such as lattice
constants, elastic constants, bulk moduli, vacancy formation energies, sublimation energies, and
heats of solution [13].
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Note that it has been necessary to modify the LAMMPS source code to enable continuous
breaking and making of nano-contacts. The simulation structure is divided along its length
(z-axis) into evenly-spaced bins via a spatial averaging fix that comes standard with LAMMPS.
Following Ref. [14], the choice of bin size (height) is the interplanar distance between close-
packed layers (2.04 Å along (001) and 2.3556 Å along (111)). Special functions have been added
to the variable subroutine in LAMMPS to find the bin containing the fewest atoms and the
number of atoms in it. Each rupture-formation simulation is repeated over twenty cycles and
paused every 10000 fs to determine the least-atom bin number and the number of atoms therein.

System sizes ranging from 500 up to almost 3000 atoms and oriented along two different
crystallographic directions, (001) and (111), have been considered. The initial configuration
consists of a neck type structure (see Fig. 2). In the case of a narrow neck (e.g., Fig. 2(a)), the
direction of motion during each rupture-formation cycle is reversed when there are a minimum
of 5 atoms in the least-atom bin. In the case of wide neck (e.g., Fig 2(b)), on the other hand,
the cycles are reversed when the least-atom bin contains 7 atoms. Each rupture or formation
cycle is continued for a further 1000 fs after these conditions have been met to ensure that
the contact has actually ruptured or that the least-atom bin indeed contains the predefined
minimum number of atoms.

Figure 2. (Colour online) Two of the initial
configurations used in the simulations, left
panel a) 525 atoms of gold, right panel b)
2804 atoms. Both are oriented along the (001)
crystallographic direction in this case.

The first two top and bottom layers of all the simulated structures are frozen and displaced
in opposite directions by 0.0041 Å and 0.0047 Å every 1000 fs for structures in the (001) and
(111) crystallographic directions, respectively. The velocity of deformation in simulations (0.41
and 0.47 m/s along (001) and (111), respectively) are within the limits that can be computed
by MD - about four orders of magnitude below the speed of sound in gold (3000 m/s) (See
Ref. [15] and the references therein). In order to keep the temperature constant throughout the
calculation, a Nose-Hoover thermostat is applied [16, 17].

For the formation cycles, a Fortran subroutine is used to calculate the minimum distance
between the two opposing electrodes. Since the electrodes are allowed to separate to about 5
Å, the atoms belonging to the top fragment are labelled ”1” and those belonging to the bottom
fragment ”2”. The first two distinctly labelled atoms (”1” and ”2”, respectively) to come within
a distance halfway between first and second nearest neighbours during contact formation cycles,
are then judged to have made contact first.

Subsequently, the conductance of selected structures at the moment of first contact - taken
from the MD simulation trajectories - are computed by means of the electronic transport code
ALACANT [18, 19, 20], using a minimal basis set that assigns only 1 orbital to each atom. It is
well known that conductance values obtained from electronic transport calculations on few-atom
nano-contacts, are determined by the few atoms in the minimum cross-section of the contact.
Therefore, in order to save time on DFT calculations, we remove a few of the outer layers from
each electrode.
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3. Results and Discussion
3.1. Molecular Dynamics Simulations
Figures 3(a), (b), (c) and (d) show the MD formation traces of the four structures considered
here. In all cases we observe that the first few cycles of formation (labelled ”run1”, ”run2”, etc.)
require more steps before first contact, with the exception of ”run13” in Fig. 3(c). All the traces
clearly exhibit a jump in distance at the moment of first contact between the electrodes. This
jump is reminiscent of those observed in experimental conductance traces [5]. We also see that
after a number of cycles the traces all overlap, indicating that the geometric configuration of
the contact repeats in a regular fashion. When the traces repeat in this way we can talk about
a process of mechanical annealing or, in other words, that we now have reproducible contacts
with sharpened tips.

Figure 3. (Color online) Traces of distance between electrodes versus time for a system of: (a)
525 atoms oriented along the (001) direction. Insets a, b and c correspond to the geometries
of the electrodes at the moment of first contact for formation cycles labelled run1, run2 and
run18, respectively; (b) 573 atoms along (111). Insets a, b and c correspond to the first-contact
geometries of formation cycles run1, run4 and run20, respectively; (c) 2804 atoms along (001).
Insets a, b and c correspond to the first-contact geometries of formation cycles run1, run3 and
run20, respectively; (d) 2719 atoms along (111). Insets a, b and c correspond to the first-contact
geometries of formation cycles run4, run8 and run12, respectively.

Traces 1 to 6 in Fig. 3(a) (525 atoms, (001) orientation) differ significantly from each other:
the jump occurs at different time steps, and its height also differs from trace to trace. However,
after run 7 all traces up to run 20 are nearly the same: the jumps occur at the same time
step and are nearly equal in height. The insets in Fig. 3(a) show the atomic configurations
right before contact for several traces. In many cases contact is made through a single atom, or
monomer ; in other cases, as in inset c, contact is made through two adjacent atoms, or double
contact. There is greater diversity among the traces in Fig. 3(b) (573 atoms, (111) orientation),
both in terms of the time taken for the jump to occur and its height. Here, it takes at least
10 indentation cycles before the traces start to overlap. When the traces are stable, the jump
to contact occurs through a monomer (inset c). However, there are also cases where the jump
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occurs through a dimer (inset a) and more than one atom (inset b). In Fig. 3(c) (2804 atoms,
(001)), the traces overlap after only three cycles. Note that the aspect ratio of this neck (the
length of the neck divided by the diameter of its minimum cross-section) is lower (∼ 2 : 1) than
that of the structure in Fig. 3(a) (∼ 5 : 1). As in Fig. 3(b), the traces in Fig. 3(d) (2719 atoms,
(111)) exhibit greater diversity. The most energetically stable surface layers of a face-centred
cubic (FCC) crystal are oriented along the (111) crystallographic direction, since atoms in the
exposed layers have more nearest neighbours than in any other direction. Because (111) layers
form on the oblique faces of the pyramid shaped electrodes that are oriented along (001), e.g.
in Figs. 3(a) and 3(c), it is easier to ”cold” anneal surfaces in this direction, requiring less than
half the number of cycles than is needed to achieve reproducible structures along (111). The
insets in Fig. 3(d) show that contact occurs more often through a vertical dimer than through
a monomer, and double atomic contacts also occur.

3.2. Results of the DFT calculations on the MD-generated contacts
Following Refs. [5, 21], we have selected three representative (111) contact geometries from
the MD atomic configurations at the moment of first contact: the monomer in inset b and the
double contact in inset c in Fig. 3(b) and the dimer in inset c in Fig. 3(d). We have calculated
the conductance of these structures since the conductance of their counterparts along (001) have
already been calculated elsewhere [21]. The results are shown in Fig. 4 and the conductance
values are expressed in units of G0. The crystallographic orientation and cycle of formation
of the three configurations are also indicated, as well as the time step of and distance to first
contact.

Type of contact, conductance and distance 

Monomer Dimer  Double Contact 

 1.60 G0 0.87 G0 
 

2.04 G0 
 Au(111) 

Run20 step 150000 
Au(111) 

 Run12 step 320000 
Au(111) 

Run04 step 665000 

 3.00 Å 

First contact distance 

 2.92 Å  3.34 Å 

First contact distance First contact distance 

Figure 4. (Colour online) Different types of
contact: monomer, dimer and double contact
and their corresponding conductances. The
distance to first contact in each case is also
shown.

We should expect the conductance of the monomer to be between that of the dimer and the
double contact, since the tunnelling current across atoms just above and below the monomer
ought to be higher than the dimer’s – because of the closer proximity of the atoms around the
monomer. It appears that neighbouring atoms in the minimum cross-section make a substantial
contribution to conductance in the form of tunnelling current, which could explain the high
value of 1.60 G0 for the monomer. The size of the distance to first contact is also consistent
with the type of contact under consideration. Thus, one would expect the jump to be smallest
in the case of the dimer – the approach of two single atoms towards each other – since the
oncoming atoms ”see” fewer atoms, and neighbours on the same electrode effectively keep them
from jumping to the opposing electrode for longer than would be expected. This contrasts with
the case of a single atom feeling the attractive force of more than one atom on the opposing
tip, e.g., the monomer in Fig. 4. The force of attraction between more than one atom on both
opposing electrodes, e.g., the double contact in Fig. 4, ought to be the greatest and hence so
should the jump to contact, as is indeed the case.
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4. Conclusion
We have shown previously [22, 23] that when repeated indentation is performed on structures
that are oriented in the (001) direction, traces of minimum cross-section versus time overlap
perfectly. This has been explained as a process of mechanical annealing of the electrodes that
results in very sharp and stable tips [22]. Here we observe the same behaviour, repetition of the
traces after several cycles of indentation, but of the minimum distance between the electrodes vs
time. Moreover, we show that electrodes oriented along (111) can also be mechanically annealed.
In contrast to (001) electrodes, the traces of (111) electrodes take longer to repeat in a regular
way, apparently due to the stability of the exposed (111) surface layers on the oblique faces
of (001) structures. In the case of (111) electrodes we also find that the final jump to contact
occurs predominantly through a monomer or a dimer, and to a lesser extent, through a double
contact.

The conductance values we obtain are in agreement with previous works [21]. However, in
the case of the monomer it is higher than expected. Instead of using a minimal one-electron
basis set, it might be necessary to use an eleven-electron basis set to improve this result [22].
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