7 research outputs found

    Predictors of Insect Diversity and Abundance in a Fragmented Tallgrass Prairie Ecosystem

    Get PDF
    Despite providing many services, the tallgrass prairie and its ecological community is one of the most endangered ecosystems in North America. Remaining habitat exists as remnants in a highly-fragmented landscape. To make informed conservation decisions we need to better understand the effects of this fragmentation. Using the ecologically important insect groups, ants and ground beetles, this study provides baseline data on the biological diversity of southeast Nebraska prairies and investigates what management, landscape, and habitat characteristics affect them. Pitfall trap sampling was conducted in 23 tallgrass remnants scattered throughout the Southeast Prairies Biologically Unique Landscape in 2010 and 2011. Multi-model inference was used for analysis of the data. Twenty-eight species of ants were collected with the majority being grassland-obligates. With a positive correlation, model selection results indicate that Shannon diversity of grassland ants is best predicted by the average number of grass species per m2 while their abundance is positively associated with the amount of nearby haymeadow. Most ants belonged to the Opportunist and Cold Climate Specialist functional groups. A comparison with prior studies indicates this functional group composition to be most similar to cool-temperate forests. Though different habitats, their cooler climates likely produce this similar composition. Nineteen species of ground beetles were collected, with two species comprising nearly 95% of the collection. These two species are incapable of flight, a physiological factor that may contribute to their high abundances by leaving them hidden from predators. As with grassland ants, the strongest predictor of Shannon diversity for ground beetles was the average number of grass species per m2. Results suggest that ants and ground beetles are non-randomly distributed in relation to landscape, habitat, and management factors. High abundances of grassland-obligate ants are associated with high amounts of haymeadow suggesting these areas may be a priority for ant conservation. Results also suggest that sites with more grass species sustain more diverse communities of ants and ground beetles, information that can be incorporated into relevant conservation decisions

    Survival and behavior of Chinese mystery snails (\u3ci\u3eBellamya chinensis\u3c/i\u3e) in response to simulated water body drawdowns and extended air exposure

    Get PDF
    Nonnative invasive mollusks degrade aquatic ecosystems and induce economic losses worldwide. Extended air exposure through water body drawdown is one management action used for control. In North America, the Chinese mystery snail (Bellamya chinensis) is an invasive aquatic snail with an expanding range, but eradication methods for this species are not well documented. We assessed the ability of B. chinensis to survive different durations of air exposure, and observed behavioral responses prior to, during, and following desiccation events. Individual B. chinensis specimens survived air exposure in a laboratory setting for \u3e 9 weeks, and survivorship was greater among adults than juveniles. Several B. chinensis specimens responded to desiccation by sealing their opercula and/or burrowing in mud substrate. Our results indicate that drawdowns alone may not be an effective means of eliminating B. chinensis. This study lays the groundwork for future management research that may determine the effectiveness of drawdowns when combined with factors such as extreme temperatures, predation, or molluscicides

    Land Use, Landscapes, and Biological Invasions

    Get PDF
    The negative effect of invasive species on native species, communities, and ecosystems is widely recognized, and the economic effects in the United States are estimated to be billions of dollars annually. Studies often examine traits of nonnative species or examine what makes a particular habitat invasible. To better understand the factors governing invasions, we used the flora of Nebraska to characterize and compare native and nonnative plant occurrences throughout the state. In addition, we assessed four critical landscape predictors of nonnative plant richness: human population size and three land cover attributes that included percentage of grassland, percentage of agriculture, and percentage of public lands. Results indicated that individual plant species richness has increased by about 35% through invasions (primarily of annuals from the family Poaceae). In addition, human population density, percentage of agriculture, and percentage of public lands all show a positive association with nonnative plant richness. Successful plant invasions may change the composition of species communities, basic ecological functions, and the delivery of ecosystem services. Thus, identifying the factors that influence such variation in distribution patterns can be fundamental to recognizing the present and potential future extent of nonnative plant infestations and, in turn, developing appropriate management programs

    Survival and behavior of Chinese mystery snails (Bellamya chinensis) in response to simulated water body drawdowns and extended air exposure

    No full text
    Nonnative invasive mollusks degrade aquatic ecosystems and induce economic losses worldwide. Extended air exposure through water bodydrawdown is one management action used for control. In North America, the Chinese mystery snail (Bellamya chinensis) is an invasiveaquatic snail with an expanding range, but eradication methods for this species are not well documented. We assessed the ability ofB. chinensis to survive different durations of air exposure, and observed behavioral responses prior to, during, and following desiccationevents. Individual B. chinensis specimens survived air exposure in a laboratory setting for > 9 weeks, and survivorship was greater amongadults than juveniles. Several B. chinensis specimens responded to desiccation by sealing their opercula and/or burrowing in mud substrate.Our results indicate that drawdowns alone may not be an effective means of eliminating B. chinensis. This study lays the groundwork forfuture management research that may determine the effectiveness of drawdowns when combined with factors such as extreme temperatures,predation, or molluscicides

    Population estimate of Chinese mystery snail (\u3ci\u3eBellamya chinensis\u3c/i\u3e) in a Nebraska reservoir

    Get PDF
    The Chinese mystery snail (Bellamya chinensis) is an aquatic invasive species in North America. Little is known regarding this species’ impacts on freshwater ecosystems. It is believed that population densities can be high, yet no population estimates have been reported. We utilized a mark-recapture approach to generate a population estimate for Chinese mystery snail in Wild Plum Lake, a 6.47-ha reservoir in southeast Nebraska. We calculated, using bias-adjusted Lincoln-Petersen estimation, that there were approximately 664 adult snails within a 127 m2 transect (5.2 snails/m2). If this density was consistent throughout the littoral zone (depth) of the reservoir, then the total adult population in this impoundment is estimated to be 253,570 snails, and the total Chinese mystery snail wet biomass is estimated to be 3,119 kg (643 kg/ha). If this density is confined to the depth sampled in this study (1.46 m), then the adult population is estimated to be 169,400 snails, and wet biomass is estimated to be 2,084 kg (643 kg/ha). Additional research is warranted to further test the utility of mark-recapture methods for aquatic snails and to better understand Chinese mystery snail distributions within reservoirs

    Fecundity of the Chinese mystery snail in a Nebraska reservoir

    Get PDF
    The Chinese mystery snail (Bellamya chinensis) is a non-indigenous, invasive species in freshwater ecosystems of North America. We provide fecundity estimates for a population of these snails in a Nebraska reservoir. We dissected 70 snails, of which 29 were females. Nearly all female snails contained developing young, with an average of 25 young per female. Annual fecundity was estimated at between 27.2 and 33.3 young per female per year. Based on an estimated adult population and the calculated fecundity, the annual production for this reservoir was between 2.2 and 3.7 million young
    corecore