16 research outputs found

    Foreground Separation and Constraints on Primordial Gravitational Waves with the PICO Space Mission

    Get PDF
    PICO is a concept for a NASA probe-scale mission aiming to detect or constrain the tensor to scalar ratio rr, a parameter that quantifies the amplitude of inflationary gravity waves. We carry out map-based component separation on simulations with five foreground models and input rr values rin=0r_{in}=0 and rin=0.003r_{in} = 0.003. We forecast rr determinations using a Gaussian likelihood assuming either no delensing or a residual lensing factor AlensA_{\rm lens} = 27%. By implementing the first full-sky, post component-separation, map-domain delensing, we show that PICO should be able to achieve AlensA_{\rm lens} = 22% - 24%. For four of the five foreground models we find that PICO would be able to set the constraints r < 1.3 \times 10^{-4} \,\, \mbox{to} \,\, r <2.7 \times 10^{-4}\, (95\%) if rin=0r_{in}=0, the strongest constraints of any foreseeable instrument. For these models, r=0.003r=0.003 is recovered with confidence levels between 18σ18\sigma and 27σ27\sigma. We find weaker, and in some cases significantly biased, upper limits when removing few low or high frequency bands. The fifth model gives a 3σ3\sigma detection when rin=0r_{in}=0 and a 3σ3\sigma bias with rin=0.003r_{in} = 0.003. However, by correlating rr determinations from many small 2.5% sky areas with the mission's 555 GHz data we identify and mitigate the bias. This analysis underscores the importance of large sky coverage. We show that when only low multipoles ℓ≀12\ell \leq 12 are used, the non-Gaussian shape of the true likelihood gives uncertainties that are on average 30% larger than a Gaussian approximation.Comment: 34 pages, 13 figures, published in JCA

    A CMB Gibbs sampler for localized secondary anisotropies

    Get PDF
    As well as primary fluctuations, CMB temperature maps contain a wealth of additional information in the form of secondary anisotropies. Secondary effects that can be identified with individual objects, such as the thermal and kinetic Sunyaev-Zel'dovich (SZ) effects due to galaxy clusters, are difficult to unambiguously disentangle from foreground contamination and the primary CMB however. We develop a Bayesian formalism for rigorously characterising anisotropies that are localised on the sky, taking the TSZ and KSZ effects as an example. Using a Gibbs sampling scheme, we are able to efficiently sample from the joint posterior distribution for a multi-component model of the sky with many thousands of correlated physical parameters. The posterior can then be exactly marginalised to estimate properties of the secondary anisotropies, fully taking into account degeneracies with the other signals in the CMB map. We show that this method is computationally tractable using a simple implementation based on the existing Commander component separation code, and also discuss how other types of secondary anisotropy can be accommodated within our framework

    Simulation of a search for the Standard Model Higgs boson in the H -> gamma gamma channel at LHC/ATLAS

    No full text
    The channel H -> gamma gamma is the most promising in which to discover a light Higgs boson with ATLAS at LHC. The ATLAS detector is one of the four experiments at the Large Hadron Collider at CERN and will, according to current planning, become operational in 2007. This thesis describes an analysis of the channel done with fast simulation of the signal and background processes in the mass range 120 - 150 GeV. The significance of the signal is calculated with the standard counting experiment technique and also with a more advanced statistical procedure. The concept of splitting the events into two channels where the signal resolution is different is also introduced

    Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations

    No full text
    LiteBIRD Collaboration: Fuskeland, U., et al.: J. Aumont, R. Aurlien, C. Baccigalupi, A. J. Banday, H. K. Eriksen, J. Errard, R. T. GĂ©nova-Santos, T. Hasebe, J. Hubmayr, H. Imada, N. Krachmalnicoff, L. Lamagna, G. Pisano, D. Poletti, M. Remazeilles, K. L. Thompson, L. Vacher, I. K. Wehus, S. Azzoni, M. Ballardini, R. B. Barreiro, N. Bartolo, A. Basyrov, D. Beck, M. Bersanelli, M. Bortolami, M. Brilenkov, E. Calabrese, A. Carones, F. J. Casas, K. Cheung, J. Chluba, S. E. Clark, L. Clermont, F. Columbro, A. Coppolecchia, G. D’Alessandro, P. de Bernardis, T. de Haan, E. de la Hoz, M. De Petris, S. Della Torre, P. Diego-Palazuelos, F. Finelli, C. Franceschet, G. Galloni0, M. Galloway, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, E. GjerlĂžw, A. Gruppuso, P. Hargrave, M. Hattori, M. Hazumi, L. T. Hergt, D. Herman, D. Herranz, E. Hivon, T. D. Hoang, K. Kohri, M. Lattanzi, A. T. Lee, C. Leloup, F. Levrier, A. I. Lonappan, G. Luzzi, B. Maffei, E. MartĂ­nez-GonzĂĄlez, S. Masi, S. Matarrese, T. Matsumura M. Migliaccio, L. Montier, G. Morgante, B. Mot, L. Mousset, R. Nagata, T. Namikawa, F. Nati, P. Natoli, S. Nerval, A. Novelli, L. Pagano, A. Paiella, D. Paoletti, G. Pascual-Cisneros, G. Patanchon, V. Pelgrims, F. Piacentini, G. Piccirilli, G. Polenta, G. Puglisi, N. Raffuzzi, A. Ritacco, J. A. Rubino-Martin, G. Savini, D. Scott, Y. Sekimoto, M. Shiraishi, G. Signorelli, S. L. Stever, N. Stutzer, R. M. Sullivan, H. Takakura, L. Terenzi, H. Thommesen, M. Tristram, M. Tsuji, P. Vielva, J. Weller, B. Westbrook, G. Weymann-Despres, E. J. Wollack and M. Zannoni.LiteBIRD is a planned JAXA-led cosmic microwave background (CMB) B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, ÎŽr, down to ÎŽr < 0.001. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust spectral energy distribution, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compared the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the High-Frequency Telescope (HFT) frequency range was shifted logarithmically toward higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measured the tensor-to-scalar ratio r uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on r after foreground cleaning may be reduced by as much as 30–50% by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to higher residuals when fitting an incorrect dust model, but also it is easier to discriminate between models through higher χ2 sensitivity. Even in the case in which the fitting procedure does not correspond to the underlying dust model in the sky, and when the highest frequency data cannot be modeled with sufficient fidelity and must be excluded from the analysis, the uncertainty on r increases by only about 5% for a 500 GHz configuration compared to the baseline.This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Canadian contribution is supported by the Canadian Space Agency. The French LiteBIRD phase A contribution is supported by the Centre National d’Études Spatiales (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat Ă  l’Énergie Atomique (CEA). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 – 390783311). The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011) and has received funding from the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme (Grant agreement No. 772253 and 819478). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de InvestigaciĂłn (AEI), project refs. PID2019-110610RB-C21, PID2020-120514GB-I00, ProID2020010108 and ICTP20210008. Funds that support contributions from Sweden come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The US contribution is supported by NASA grant no. 80NSSC18K0132. We also acknowledge funding from the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme (Grant agreement No. 725456 and 849169) and The Royal Society (Grant No. URF/R/191023).Peer reviewe

    In-flight polarization angle calibration for LiteBIRD: blind challenge and cosmological implications

    No full text
    International audienceWe present a demonstration of the in-flight polarization angle calibration for the JAXA/ISAS second strategic large class mission, LiteBIRD, and estimate its impact on the measurement of the tensor-to-scalar ratio parameter, r, using simulated data. We generate a set of simulated sky maps with CMB and polarized foreground emission, and inject instrumental noise and polarization angle offsets to the 22 (partially overlapping) LiteBIRD frequency channels. Our in-flight angle calibration relies on nulling the EB cross correlation of the polarized signal in each channel. This calibration step has been carried out by two independent groups with a blind analysis, allowing an accuracy of the order of a few arc-minutes to be reached on the estimate of the angle offsets. Both the corrected and uncorrected multi-frequency maps are propagated through the foreground cleaning step, with the goal of computing clean CMB maps. We employ two component separation algorithms, the Bayesian-Separation of Components and Residuals Estimate Tool (B-SeCRET), and the Needlet Internal Linear Combination (NILC). We find that the recovered CMB maps obtained with algorithms that do not make any assumptions about the foreground properties, such as NILC, are only mildly affected by the angle miscalibration. However, polarization angle offsets strongly bias results obtained with the parametric fitting method. Once the miscalibration angles are corrected by EB nulling prior to the component separation, both component separation algorithms result in an unbiased estimation of the r parameter. While this work is motivated by the conceptual design study for LiteBIRD, its framework can be broadly applied to any CMB polarization experiment. In particular, the combination of simulation plus blind analysis provides a robust forecast by taking into account not only detector sensitivity but also systematic effects

    PICO: Probe of Inflation and Cosmic Origins

    No full text
    The Probe of Inflation and Cosmic Origins (PICO) is a proposed probe-scale space mission consisting of an imaging polarimeter operating in frequency bands between 20 and 800 GHz. We describe the science achievable by PICO, which has sensitivity equivalent to more than 3300 Planck missions, the technical implementation, the schedule and cost

    PICO: Probe of Inflation and Cosmic Origins

    No full text
    The Probe of Inflation and Cosmic Origins (PICO) is an imaging polarimeter that will scan the sky for 5 years in 21 frequency bands spread between 21 and 799 GHz. It will produce full-sky surveys of intensity and polarization with a final combined-map noise level of 0.87 ÎŒ\muK arcmin for the required specifications, equivalent to 3300 Planck missions, and with our current best-estimate would have a noise level of 0.61 ÎŒ\muK arcmin (6400 Planck missions). PICO will either determine the energy scale of inflation by detecting the tensor to scalar ratio at a level r=5×10−4 (5σ)r=5\times 10^{-4}~(5\sigma), or will rule out with more than 5σ5\sigma all inflation models for which the characteristic scale in the potential is the Planck scale. With LSST's data it could rule out all models of slow-roll inflation. PICO will detect the sum of neutrino masses at >4σ>4\sigma, constrain the effective number of light particle species with ΔNeff<0.06 (2σ)\Delta N_{\rm eff}<0.06~(2\sigma), and elucidate processes affecting the evolution of cosmic structures by measuring the optical depth to reionization with errors limited by cosmic variance and by constraining the evolution of the amplitude of linear fluctuations σ8(z)\sigma_{8}(z) with sub-percent accuracy. Cross-correlating PICO's map of the thermal Sunyaev-Zeldovich effect with LSST's gold sample of galaxies will precisely trace the evolution of thermal pressure with zz. PICO's maps of the Milky Way will be used to determine the make up of galactic dust and the role of magnetic fields in star formation efficiency. With 21 full sky legacy maps in intensity and polarization, which cannot be obtained in any other way, the mission will enrich many areas of astrophysics. PICO is the only single-platform instrument with the combination of sensitivity, angular resolution, frequency bands, and control of systematic effects that can deliver this compelling, timely, and broad science

    PICO: Probe of Inflation and Cosmic Origins

    Get PDF
    The Probe of Inflation and Cosmic Origins (PICO) is an imaging polarimeter that will scan the sky for 5 years in 21 frequency bands spread between 21 and 799 GHz. It will produce full-sky surveys of intensity and polarization with a final combined-map noise level of 0.87 ÎŒ\muK arcmin for the required specifications, equivalent to 3300 Planck missions, and with our current best-estimate would have a noise level of 0.61 ÎŒ\muK arcmin (6400 Planck missions). PICO will either determine the energy scale of inflation by detecting the tensor to scalar ratio at a level r=5×10−4 (5σ)r=5\times 10^{-4}~(5\sigma), or will rule out with more than 5σ5\sigma all inflation models for which the characteristic scale in the potential is the Planck scale. With LSST's data it could rule out all models of slow-roll inflation. PICO will detect the sum of neutrino masses at >4σ>4\sigma, constrain the effective number of light particle species with ΔNeff<0.06 (2σ)\Delta N_{\rm eff}<0.06~(2\sigma), and elucidate processes affecting the evolution of cosmic structures by measuring the optical depth to reionization with errors limited by cosmic variance and by constraining the evolution of the amplitude of linear fluctuations σ8(z)\sigma_{8}(z) with sub-percent accuracy. Cross-correlating PICO's map of the thermal Sunyaev-Zeldovich effect with LSST's gold sample of galaxies will precisely trace the evolution of thermal pressure with zz. PICO's maps of the Milky Way will be used to determine the make up of galactic dust and the role of magnetic fields in star formation efficiency. With 21 full sky legacy maps in intensity and polarization, which cannot be obtained in any other way, the mission will enrich many areas of astrophysics. PICO is the only single-platform instrument with the combination of sensitivity, angular resolution, frequency bands, and control of systematic effects that can deliver this compelling, timely, and broad science

    Concept design of the LiteBIRD satellite for CMB B-mode polarization

    Get PDF
    LiteBIRD is a candidate for JAXA's strategic large mission to observe the cosmic microwave background (CMB) polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of r < 0:001. A 3-year full sky survey will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz) telescope (HFT), which achieve a sensitivity of 2.5 \u3bcK-arcmin with an angular resolution 30 arcminutes around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and verification plan is described in this paper

    Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD

    No full text
    LiteBIRD has been selected as JAXA’s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34–161 GHz), one of LiteBIRD’s onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90◩ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented
    corecore