10 research outputs found

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project

    Get PDF
    Purpose: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). Methods: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. Results: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. Conclusion: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection

    Iterative finite element deformable model for nonrigid coregistration of multimodal breast images

    No full text
    We have developed a nonrigid registration technique applicable to breast tissue imaging. It relies on a finite element method (FEM) model and a set of fiducial skin markers (FSMs) placed on the breast surface. It can be applied for both intra- and intermodal breast image registration. The registration consists of two steps. First, location and displacements of corresponding FSM observed in both moving and target volumes are determined, and then FEM is used to distribute the FSM displacements linearly over the entire breast volume. After determining the displacements at all the mesh nodes, the moving breast volume is registered to the target breast volume using an image-warping algorithm. In the second step, to correct for any residual misregistration, displacements are estimated for a large number of corresponding surface points on the moving and the target breast images, already aligned in 3D, and our FEM model and the warping algorithm are applied again. Our non-rigid multimodality and intramodality breast image registration method yielded good quality images with target registration error comparable with pertinent imaging system spatial resolution. © 2006 IEEE

    MRI/PET nonrigid breast-image registration using skin fiducial markers

    No full text
    We propose a finite-element method (FEM) deformable breast model that does not require elastic breast data for nonrigid PET/MRI breast image registration. The model is applicable only if the stress conditions in the imaged breast are virtually the same in PET and MRI. Under these conditions, the observed intermodality displacements are solely due the imaging/reconstruction process. Similar stress conditions are assured by use of an MRI breast-antenna replica for breast support during PET, and use of the same positioning. The tetrahedral volume and triangular surface elements are used to construct the FEM mesh from the MRI image. Our model requires a number of fiducial skin markers (FSM) visible in PET and MRI. The displacement vectors of FSMs are measured followed by the dense displacement field estimation by first distributing the displacement vectors linearly over the breast surface and then distributing them throughout the volume. Finally, the floating MRI image is warped to a fixed PET image, by using an appropriate shape function in the interpolation from mesh nodes to voxels. We tested our model on an elastic breast phantom with simulated internal lesions and on a small number of patients imaged with FSM using PET and MRI. Using simulated lesions (in phantom) and real lesions (in patients) visible in both PET and MRI, we established that the target registration error (TRE) is below two pet voxels

    registration with fiducial skin markers

    No full text
    Deformable model for 3D intramodal nonrigid breast imag

    Inverse problems for selfadjoint Schrödinger operators on the half line with compactly supported potentials

    No full text
    For a selfadjoint Schr\"odinger operator on the half line with a real-valued, integrable, and compactly-supported potential, it is investigated whether the boundary parameter at the origin and the potential can uniquely be determined by the scattering matrix or by the absolute value of the Jost function known at positive energies, without having the bound-state information. It is proved that, except in one special case where the scattering matrix has no bound states and its value is +1+1 at zero energy, the determination by the scattering matrix is unique. In the special case, it is shown that there are exactly two distinct sets consisting of a potential and a boundary parameter yielding the same scattering matrix, and a characterization of the nonuniqueness is provided. A reconstruction from the scattering matrix is outlined yielding all the corresponding potentials and boundary parameters. The concept of "eligible resonances" is introduced, and such resonances correspond to real-energy resonances that can be converted into bound states via a Darboux transformation without changing the compact support of the potential. It is proved that the determination of the boundary parameter and the potential by the absolute value of the Jost function is unique up to the inclusion of eligible resonances. Several equivalent characterizations are provided to determine whether a resonance is eligible or ineligible. A reconstruction from the absolute value of the Jost function is given, yielding all the corresponding potentials and boundary parameters. The results obtained are illustrated with various explicit examples.Comment: 61 pages, 2 figure

    Iterative deformable FEM model for nonrigid PET/MRI breast image coregistration

    No full text
    We implemented an iterative nonrigid registration algorithm to accurately combine functional (PET) and anatomical (MRI) images in 3D. Our method relies on a Finite Element Method (FEM) and a set of fiducial skin markers (FSM) placed on breast surface. The method is applicable if the stress conditions in the imaged breast are virtually the same in PET and MRI. In the first phase, the displacement vectors of the corresponding FSM observed in MRI and PET are determined, then FEM is used to distribute FSM displacements linearly over the entire breast volume. Our FEM model relies on the analogy between each of the orthogonal components of displacement field, and the temperature distribution field in a steady state heat transfer (SSHT) in solids. The problem can thus be solved via standard heat-conduction FEM software, with arbitrary conductivity of surface elements set much higher than that of volume elements. After determining the displacements at all mesh nodes, moving (MRI) breast volume is registered to target (PET) breast volume using an image-warping algorithm. In the second iteration, to correct for any residual surface and volume misregistration, a refinement process is applied to the moving image, which was already grossly aligned with the target image in 3D using FSM. To perform this process we determine a number of corresponding points on each moving and target image surfaces using a nearest-point approach. Then, after estimating the displacement vectors between the corresponding points on the surfaces we apply our SSHT model again. We tested our model on twelve patients with suspicious breast lesions. By using lesions visible in both PET and MRI, we established that the target registration error is below two PET voxels. The surface registration error is comparable to the spatial resolution of PET

    Poster presentations.

    No full text

    Antimicrobial Lessons From a Large Observational Cohort on Intra-abdominal Infections in Intensive Care Units

    No full text
    Severe intra-abdominal infection commonly requires intensive care. Mortality is high and is mainly determined by disease-specific characteristics, i.e. setting of infection onset, anatomical barrier disruption, and severity of disease expression. Recent observations revealed that antimicrobial resistance appears equally common in community-acquired and late-onset hospital-acquired infection. This challenges basic principles in anti-infective therapy guidelines, including the paradigm that pathogens involved in community-acquired infection are covered by standard empiric antimicrobial regimens, and second, the concept of nosocomial acquisition as the main driver for resistance involvement. In this study, we report on resistance profiles of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis and Enterococcus faecium in distinct European geographic regions based on an observational cohort study on intra-abdominal infections in intensive care unit (ICU) patients. Resistance against aminopenicillins, fluoroquinolones, and third-generation cephalosporins in E. coli, K. pneumoniae and P. aeruginosa is problematic, as is carbapenem-resistance in the latter pathogen. For E. coli and K. pneumoniae, resistance is mainly an issue in Central Europe, Eastern and South-East Europe, and Southern Europe, while resistance in P. aeruginosa is additionally problematic in Western Europe. Vancomycin-resistance in E. faecalis is of lesser concern but requires vigilance in E. faecium in Central and Eastern and South-East Europe. In the subcohort of patients with secondary peritonitis presenting with either sepsis or septic shock, the appropriateness of empiric antimicrobial therapy was not associated with mortality. In contrast, failure of source control was strongly associated with mortality. The relevance of these new insights for future recommendations regarding empiric antimicrobial therapy in intra-abdominal infections is discussed
    corecore