990 research outputs found

    Floristic Quality Index and Forested Floristic Quality Index: Assessment Tools for Restoration Projects and Monitoring Sites in Coastal Louisiana

    Get PDF
    In 2003, the Coastwide Reference Monitoring System (CRMS) program was established in coastal Louisiana marshes and swamps to assess the effectiveness of individual coastal restoration projects and the cumulative effects of multiple projects at regional and coastwide scales (Steyer et al., 2003). In order to make these assessments, analytical teams were assembled for each of the primary data types sampled under theCRMS program, including vegetation, hydrology, landscape, and soils. These teams consisted of scientists and support staff from the US Geological Survey and other federal agencies, the Coastal Protection and Restoration Authority of Louisiana, and university academics. Each team was responsible for developing or identifying parameters, indices, or tools that can be used to assess coastal wetlands at various scales. The CRMS Vegetation Analytical Team has developed a Floristic Quality Index (FQI) for coastal Louisiana to determine the quality of a wetland based on the composition and abundance of its herbaceous plant species (Cretini et al., 2012). The team has also developed a Forested Floristic Quality Index (FFQI) that uses basal area by species to assess the quality and quantity of the overstory at forested wetland sites in Louisiana (Wood et al., 2017). Together these indices can provide an estimate of wetland vegetation health in coastal Louisiana marshes and swamps. The FQI has been developed and used for several regions throughout the United States to provide an objective assessment of the vegetation quality or biological integrity of wetland plant communities. The FQI was first developed as a weighted average of the native plant species at a site (Swink and Wilhelm, 1979). It is based on a coefficient of conservatism (CC) score that is scaled from 0 to 10 and is applied to each plant species in a local flora. The score reflects a species’ tolerance to disturbance and specificity to a particular habitat type. Species adapted to disturbed areas are often not habitat specific and, as such, have a low CC score. In contrast, habitat-specific species are generally not tolerant to disturbances and, as such, have a high CC score. A group of experts on local plants agrees upon and assigns CC scores. The FFQI, which is similar to the FQI, was developed to evaluate ecosystem structural changes among forested wetland sites. The FFQI will be used to (1) evaluate forested wetland sites on a continuum from severely degraded to healthy, (2) assist in defining areas where forested wetland restoration is needed, and (3) determine the effectiveness of future restoration projects aiming to return degraded forested wetlands to healthy ecosystems. While the FQI is based on the percent cover of emergent herbaceous species, the FFQI uses this emergent herbaceous layer data in conjunction with the basal area at a species level and canopy cover. As such, the FFQI is a natural extension of the FQI and can be used in conjunction with the FQI of the understory herbaceous community in forested wetland systems, as there is typically an inverse relation between tree and herbaceous layer vegetation dominance in Louisiana’s coastally restricted forested wetlands that represents natural succession (Conner and Day, 1992a; Shaffer et al., 2009; Nyman, 2014). As environmentally driven temporal shifts occur in the ecosystem, the FFQI contains valuable information that depicts a trajectory in system function. Generally, coastal flooded forested wetlands have transitioned to shrub-scrub; fresh, floating, and intermediate marshes; and open water. Conversely, in a few select locations, such as the Atchafalaya River Delta, the natural deltaic cycle causes the reversal of this trend. In this emerging deltaic environment, the succession of fresh marsh is transitioning into young forested wetlands populated by low value pioneer and disturbance woody species, leading to the development of fledgling swamps (Johnson et al., 1985; Shaffer et al., 1992). These two contrasting successional trajectories occurring within the same coastal system and same monitoring network highlight the need for a multivariable and index approach to site and restoration assessment

    Optimisation and investment analysis of two biomass-to-heat supply chain structures

    Get PDF
    As oil prices have risen dramatically lately, many people explore alternative ways of heating their residences and businesses in order to reduce the respective cost. One of the options usually considered nowadays is biomass, especially in rural areas with significant local biomass availability. This work focuses on comparing two different biomass energy exploitation systems, aiming to provide heat to a specific number of customers at a specific cost. The first system explored is producing pellets from biomass and distributing them to the final customers for use in domestic pellet boilers. The second option is building a centralised co-generation (CHP) unit that will generate electricity and heat. Electricity will be fed to the grid, whereas heat will be distributed to the customers via a district heating network. The biomass source examined is agricultural residues and the model is applied to a case study region in Greece. The analysis is performed from the viewpoint of the potential investor. Several design characteristics of both systems are optimised. In both cases the whole biomass-to-energy supply chain is modelled, both upstream and downstream of the pelleting/CHP units. The results of the case study show that both options have positive financial yield, with the pelleting plant having higher yield. However, the sensitivity analysis reveals that the pelleting plant yield is much more sensitive than that of the CHP plant, therefore constituting a riskier investment. The model presented may be used as a decision support system for potential investors willing to engage in the biomass energy field

    Stacked crop rotations and cultural practices for canola and flax yield and quality

    Get PDF
    Canola (Brassica napus L.) and flax (Linum usitatissimum L.) are important oilseed crops, but improved management practices to enhance their yields and quality are needed. We studied the effect of stacked versus alternate‐year crop rotations and traditional versus improved cultural practices on canola and flax growth, seed yield, oil concentration, and N‐use efficiency from 2006 to 2011 in the northern Great Plains, USA. Stacked rotations were durum (Triticum turgidum L.)‐durum‐canola‐pea (Pisum sativum L.) (DDCP) and durum‐durum‐flax‐pea (DDFP). Alternate‐year rotations were durum‐canola‐durum‐pea (DCDP) and durum‐flax‐durum‐pea (DFDP). The traditional cultural practice included a combination of conventional tillage, recommended seed rate, broadcast N fertilization, and reduced stubble height. The improved cultural practice included a combination of no‐tillage, increased seed rate, banded N fertilization, and increased stubble height. Canola stand count was 36–123% greater with the improved than the traditional cultural practice in 2006, 2009, 2010, and 2011. Canola pod number and oil concentration were 3–36% greater in the improved than the traditional practice in 2007 and 2010, but trends reversed by 5–19% in 2008. Flax stand count was 28% greater with DFDP than DDFP in 2007 and 56% greater in the improved than the traditional practice in 2010. Flax pod number, seed weight, seed yield, N content, N‐use efficiency, and N‐removal index varied with crop rotations, cultural practices, and years. Canola growth and oil concentration increased with the improved cultural practice as well as flax growth, yield, and quality enhanced with alternate‐year crop rotation and the improved cultural practice in wet years
    corecore