730 research outputs found

    Heuristic strategies for NFV-enabled renewable and non-renewable energy management in the future IoT world

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The ever-growing energy demand and the CO2 emissions caused by energy production and consumption have become critical concerns worldwide and drive new energy management and consumption schemes. In this regard, energy systems that promote green energy, customer-side participation enabled by the Internet of Things (IoT) technologies, and adaptive consumption mechanisms implemented on advanced communications technologies such as the Network Function Virtualization (NFV) emerge as sustainable and de-carbonized alternatives. On these modern schemes, diverse management algorithmic solutions can be deployed to promote the interaction between generation and consumption sides and optimize the use of available energy either from renewable or non-renewable sources. However, existing literature shows that management solutions considering features such as the dynamic nature of renewable energy generation, prioritization in energy provisioning if needed, and time-shifting capabilities to adapt the workloads to energy availability present a complexity NP-Hard. This condition imposes limits on applicability to a small number of energy demands or time-shifting values. Therefore, faster and less complex adaptive energy management approaches are needed. To meet these requirements, this paper proposes three heuristic strategies: a greedy strategy (GreedyTs), a genetic-algorithm-based solution (GATs), and a dynamic programming approach (DPTs) that, when deployed at the NFV domain, seeks the best possible scheduling of demands that lead to efficient energy utilization. The performance of the algorithmic strategies is validated through extensive simulations in several scenarios, demonstrating improvements in energy consumption and processing of demands. Additionally, simulation results reveal that the heuristic approaches produce high-quality solutions close to the optimal while executing among two and seven orders of magnitude faster and with applicability to scenarios with thousands and hundreds of thousands of energy demands.This work was supported by the Ministerio de Ciencia e Innovación of the Spanish Government under Project PID2019-108713RB-C51. The work of Christian Tipantuña was supported in part by the Escuela Politécnica Nacional and in part by Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT).Peer ReviewedPostprint (published version

    Uptake and cytotoxicity of citrate-coated gold nanospheres : comparative studies on human endothelial and epithelial cells

    Get PDF
    The use of gold nanoparticles (AuNPs) for diagnostic applications and for drug and gene-delivery is currently under intensive investigation. For such applications, biocompatibility and the absence of cytotoxicity of AuNPs is essential. Although generally considered as highly biocompatible, previous in vitro studies have shown that cytotoxicity of AuNPs in certain human epithelial cells was observed. In particular, the degree of purification of AuNPs (presence of sodium citrate residues on the particles) was shown to affect the proliferation and induce cytotoxicity in these cells. To expand these studies, we have examined if the effects are related to nanoparticle size (10, 11 nm, 25 nm), to the presence of sodium citrate on the particles' surface or they are due to a varying degree of internalization of the AuNPs. Since two cell types are present in the major barriers to the outside in the human body, we have also included endothelial cells from the vasculature and blood brain barrier. Results Transmission electron microscopy demonstrates that the internalized gold nanoparticles are located within vesicles. Increased cytotoxicity was observed after exposure to AuNPs and was found to be concentration-dependent. In addition, cell viability and the proliferation of both endothelial cells decreased after exposure to gold nanoparticles, especially at high concentrations. Moreover, in contrast to the size of the particles (10 nm, 11 nm, 25 nm), the presence of sodium citrate on the nanoparticle surface appeared to enhance these effects. The effects on microvascular endothelial cells from blood vessels were slightly enhanced compared to the effects on brain-derived endothelial cells. A quantification of AuNPs within cells by ICP-AES showed that epithelial cells internalized a higher quantity of AuNPs compared to endothelial cells and that the quantity of uptake is not correlated with the amount of sodium citrate on the nanoparticles’ surface. Conclusions In conclusion the higher amount of citrate on the particle surface resulted in a higher impairment of cell viability, but did not enhance or reduce the uptake behavior in endothelial or epithelial cells. In addition, epithelial and endothelial cells exhibited different uptake behaviors for citrate-stabilized gold nanoparticles, which might be related to different interactions occurring at the nanoparticle-cell-surface interface. The different uptake in epithelial cells might explain the higher reduction of proliferation of these cells after exposure to AuNPs treatment although more detailed investigations are necessary to determine subcellular events. Nevertheless an extrinsic effect of sodium-citrate stabilized particles could not be excluded. Thus, the amount of sodium citrate should be reduced to a level on which the stability of the particles and the safety for biomedical applications are guaranteed

    Immunize the Public against Disinformation Campaigns: Developing a Framework for Analyzing the Macrosocial Effects of Prebunking Interventions

    Get PDF
    The rapid spread of disinformation through online environments challenges the development of suitable solution approaches. The scientific evaluation of various intervention strategies shows that until now, no magic bullet has been found that can overcome the problem in all relevant dimensions. Due to the effective impact at the individual level, research highlights the potential of prebunking interventions as a promising coping approach to achieve herd immunity to disinformation on a macrosocial level. Inside a detection system, prebunking interventions can curb the spread of disinformation campaigns early. The identification of turning points at which preventive intervention in (dis)information diffusion is necessary for implementation first requires an exploration of the effectiveness of the diffusion of prebunking interventions in social networks. We present a framework for analyzing the macrosocial effects and patterns of the effectiveness of prebunking interventions in the context of three different attack scenarios of stereotypical disinformation campaigns using agent-based modeling

    Detection of Single Molecules Illuminated by a Light-Emitting Diode

    Get PDF
    Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes.Comment: 7 pages, 5 figure
    corecore