27 research outputs found

    Evaluation of Diuretic Activity of Aqueous and Methanol Extracts of Lepidium sativum Garden Cress (Cruciferae) in Rats

    Get PDF
    Purpose: The present study was undertaken to investigate diuretic effect of aqueous and methanol extracts of the dried seeds of Lepidium sativum in normal rats.Method: Aqueous and methanol extracts of L. sativum seeds were administered to experimental rats orally at doses of 50 and 100 mg/kg p.o. Hydrochlorothiazide (10 mg/kg) was used as positive control instudy. The diuretic effect of the extracts was evaluated by measuring urine volume, sodium and potassium content, conductivity and pH.Result: Urine volume was significantly increased by the two doses of aqueous and methanol extracts in comparison to control group. While the excretion of sodium was also increased by both extracts, potassium excretion was only increased by the aqueous extract at a dose of 100 mg/kg. There was no significant change in the conductivity and pH of urine after administration of the L. sativum extracts. The diuretic effect of the extracts was comparable to that of the reference standard (hydrochlorothiazide) and the methanol had the additional advantage of a potassium-conserving effect.Conclusion: We can conclude that aqueous and methanol extracts of L. sativum produced notable diuretic effect which appeared to be comparable to that produced by the reference diuretic HCTZ. The present study provides a quantitative basis for explaining the folkloric use of L. sativum as a diuretic agent in Moroccan population

    Antidiabetic activity of Plumeria rubra L. in normal and alloxan induced diabetic mice

    Get PDF
    Background: Diabetes mellitus is a major source of morbidity in developed countries. In spite of the introduction of hypoglycemic agents, diabetes and related complications continue to be a major medical problem. Our present study aims to investigate the antidiabetic activity of aqueous extract of plumeria rubra (PR) in experimental animals.Methods: PR extract was subjected to antidiabetic study in alloxan induced diabetic model at three-dose levels 100,200 and 400 mg/kg respectively. It was also tested for hypoglycemic activity at same dose levels. Diabetes was induced by alloxan monohydrate (150 mg/kg, i.p.). PR extracts and standard drug glibenclamide (10 mg/kg, p.o.) was administered to animals for 28 days. The blood glucose, serum cholesterol, serum triglyceride, high density lipoprotein, low density lipoprotein, glycosylated hemoglobin. Body weights were assessed in the experimental animals. Histopathological observations during 28 days treatment were also evaluated.Results: PR extract induced significant reduction (P<0.001) in fasting blood glucose levels in normal and alloxan-induced diabetic mice. Significant differences were observed in serum lipid profiles, glycosylated haemoglobin by extract treated-diabetic animals, when compared with the diabetic control and normal animals. The protective effect of PR was also evident from the histopathological examination on pancreas, liver and kidney. It reduced the injuries induced by alloxan.Conclusions: PR exhibited significant antihyperglycemic activity in normal and alloxan-induced diabetic mice. The results of the present study provide support to the traditional usage of the plant in diabetes

    Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency

    Get PDF
    Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover, we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90% without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days. Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem cells to a specific lineage

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease

    Antidiabetic activity of Plumeria rubra L. in normal and alloxan induced diabetic mice

    No full text
    Background: Diabetes mellitus is a major source of morbidity in developed countries. In spite of the introduction of hypoglycemic agents, diabetes and related complications continue to be a major medical problem. Our present study aims to investigate the antidiabetic activity of aqueous extract of plumeria rubra (PR) in experimental animals.Methods: PR extract was subjected to antidiabetic study in alloxan induced diabetic model at three-dose levels 100,200 and 400 mg/kg respectively. It was also tested for hypoglycemic activity at same dose levels. Diabetes was induced by alloxan monohydrate (150 mg/kg, i.p.). PR extracts and standard drug glibenclamide (10 mg/kg, p.o.) was administered to animals for 28 days. The blood glucose, serum cholesterol, serum triglyceride, high density lipoprotein, low density lipoprotein, glycosylated hemoglobin. Body weights were assessed in the experimental animals. Histopathological observations during 28 days treatment were also evaluated.Results: PR extract induced significant reduction (P&lt;0.001) in fasting blood glucose levels in normal and alloxan-induced diabetic mice. Significant differences were observed in serum lipid profiles, glycosylated haemoglobin by extract treated-diabetic animals, when compared with the diabetic control and normal animals. The protective effect of PR was also evident from the histopathological examination on pancreas, liver and kidney. It reduced the injuries induced by alloxan.Conclusions: PR exhibited significant antihyperglycemic activity in normal and alloxan-induced diabetic mice. The results of the present study provide support to the traditional usage of the plant in diabetes

    <span style="font-size:12.0pt;font-family: "Times New Roman";mso-fareast-font-family:"Times New Roman";mso-ansi-language: EN-GB;mso-fareast-language:EN-US;mso-bidi-language:AR-SA" lang="EN-GB">Potassium phosphate <span style="mso-bidi-font-weight:bold">catalyzed efficient synthesis of 3-carboxycoumarins</span></span>

    No full text
    1039-1042<span style="font-size:12.0pt;font-family: " times="" new="" roman";mso-fareast-font-family:"times="" roman";mso-ansi-language:="" en-gb;mso-fareast-language:en-us;mso-bidi-language:ar-sa"="" lang="EN-GB">An efficient and rapid synthesis of 3-carboxycoumarins has been expediently accomplished by a reaction of salicylaldehyde with Meldrum’s acid using potassium phosphate as an inexpensive catalyst at ambient temperature. </span
    corecore