39 research outputs found

    Reducing insecticide use in broad-acre grains production: An Australian study

    Get PDF
    Prophylactic use of broad-spectrum insecticides is a common feature of broad-acre grains production systems around the world. Efforts to reduce pesticide use in these systems have the potential to deliver environmental benefits to large areas of agricultural land. However, research and extension initiatives aimed at decoupling pest management decisions from the simple act of applying a cheap insecticide have languished. This places farmers in a vulnerable position of high reliance on a few products that may lose their efficacy due to pests developing resistance, or be lost from use due to regulatory changes. The first step towards developing Integrated Pest Management (IPM) strategies involves an increased efficiency of pesticide inputs. Especially challenging is an understanding of when and where an insecticide application can be withheld without risking yield loss. Here, we quantify the effect of different pest management strategies on the abundance of pest and beneficial arthropods, crop damage and yield, across five sites that span the diversity of contexts in which grains crops are grown in southern Australia. Our results show that while greater insecticide use did reduce the abundance of many pests, this was not coupled with higher yields. Feeding damage by arthropod pests was seen in plots with lower insecticide use but this did not translate into yield losses. For canola, we found that plots that used insecticide seed treatments were most likely to deliver a yield benefit; however other insecticides appear to be unnecessary and economically costly. When considering wheat, none of the insecticide inputs provided an economically justifiable yield gain. These results indicate that there are opportunities for Australian grain growers to reduce insecticide inputs without risking yield loss in some seasons. We see this as the critical first step towards developing IPM practices that will be widely adopted across intensive production systems. © 2014 Macfadyen et al

    Climate change drives microevolution in a wild bird

    Get PDF
    To ensure long-term persistence, organisms must adapt to climate change, but an evolutionary response to a quantified selection pressure driven by climate change has not been empirically demonstrated in a wild population. Here, we show that pheomelanin-based plumage colouration in tawny owls is a highly heritable trait, consistent with a simple Mendelian pattern of brown (dark) dominance over grey (pale). We show that strong viability selection against the brown morph occurs, but only under snow-rich winters. As winter conditions became milder in the last decades, selection against the brown morph diminished. Concurrent with this reduced selection, the frequency of brown morphs increased rapidly in our study population during the last 28 years and nationwide during the last 48 years. Hence, we show the first evidence that recent climate change alters natural selection in a wild population leading to a microevolutionary response, which demonstrates the ability of wild populations to evolve in response to climate change

    The chromosomal polymorphism of Drosophila subobscura: a microevolutionary weapon to monitor global change

    Get PDF
    The Palaearctic species Drosophila subobscura recently invaded the west coast of Chile and North America. This invasion helped to corroborate the adaptive value of the rich chromosomal polymorphism of the species, as the same clinal patterns than those observed in the original Palaearctic area were reproduced in the colonized areas in a relatively short period of time. The rapid response of this polymorphism to environmental conditions makes it a good candidate to measure the effect of the global rising of temperatures on the genetic composition of populations. Indeed, the long-term variation of this polymorphism shows a general increase in the frequency of those inversions typical of low latitudes, with a corresponding decrease of those typical of populations closer to the poles. Although the mechanisms underlying these changes are not well understood, the system remains a valid tool to monitor the genetic impact of global warming on natural populations. Heredity ( 2009) 103, 364-367; doi: 10.1038/hdy.2009.86; published online 29 July 200

    Comprehensive Primer Design for Analysis of Population Genetics in Non-Sequenced Organisms

    Get PDF
    Nuclear sequence markers are useful tool for the study of the history of populations and adaptation. However, it is not easy to obtain multiple nuclear primers for organisms with poor or no genomic sequence information. Here we used the genomes of organisms that have been fully sequenced to design comprehensive sets of primers to amplify polymorphic genomic fragments of multiple nuclear genes in non-sequenced organisms. First, we identified a large number of candidate polymorphic regions that were flanked on each side by conserved regions in the reference genomes. We then designed primers based on these conserved sequences and examined whether the primers could be used to amplify sequences in target species, montane brown frog (Rana ornativentris), anole lizard (Anolis sagrei), guppy (Poecilia reticulata), and fruit fly (Drosophila melanogaster), for population genetic analysis. We successfully obtained polymorphic markers for all target species studied. In addition, we found that sequence identities of the regions between the primer sites in the reference genomes affected the experimental success of DNA amplification and identification of polymorphic loci in the target genomes, and that exonic primers had a higher success rate than intronic primers in amplifying readable sequences. We conclude that this comparative genomic approach is a time- and cost-effective way to obtain polymorphic markers for non-sequenced organisms, and that it will contribute to the further development of evolutionary ecology and population genetics for non-sequenced organisms, aiding in the understanding of the genetic basis of adaptation

    Flowering Time Diversification and Dispersal in Central Eurasian Wild Wheat Aegilops tauschii Coss.: Genealogical and Ecological Framework

    Get PDF
    Timing of flowering is a reproductive trait that has significant impact on fitness in plants. In contrast to recent advances in understanding the molecular basis of floral transition, few empirical studies have addressed questions concerning population processes of flowering time diversification within species. We analyzed chloroplast DNA genealogical structure of flowering time variation in central Eurasian wild wheat Aegilops tauschii Coss. using 200 accessions that represent the entire species range. Flowering time measured as days from germination to flowering varied from 144.0 to 190.0 days (average 161.3 days) among accessions in a common garden/greenhouse experiment. Subsequent genealogical and statistical analyses showed that (1) there exist significant longitudinal and latitudinal clines in flowering time at the species level, (2) the early-flowering phenotype evolved in two intraspecific lineages, (3) in Asia, winter temperature was an environmental factor that affected the longitudinal clinal pattern of flowering time variation, and (4) in Transcaucasus-Middle East, some latitudinal factors affected the geographic pattern of flowering time variation. On the basis of palaeoclimatic, biogeographic, and genetic evidence, the northern part of current species' range [which was within the temperate desert vegetation (TDV) zone at the Last Glacial Maximum] is hypothesized to have harbored species refugia. Postglacial southward dispersal from the TDV zone seems to have been driven by lineages that evolved short-flowering-time phenotypes through different genetic mechanisms in Transcaucasus-Middle East and Asia

    Copy Number Variation and Transposable Elements Feature in Recent, Ongoing Adaptation at the Cyp6g1 Locus

    Get PDF
    The increased transcription of the Cyp6g1 gene of Drosophila melanogaster, and consequent resistance to insecticides such as DDT, is a widely cited example of adaptation mediated by cis-regulatory change. A fragment of an Accord transposable element inserted upstream of the Cyp6g1 gene is causally associated with resistance and has spread to high frequencies in populations around the world since the 1940s. Here we report the existence of a natural allelic series at this locus of D. melanogaster, involving copy number variation of Cyp6g1, and two additional transposable element insertions (a P and an HMS-Beagle). We provide evidence that this genetic variation underpins phenotypic variation, as the more derived the allele, the greater the level of DDT resistance. Tracking the spatial and temporal patterns of allele frequency changes indicates that the multiple steps of the allelic series are adaptive. Further, a DDT association study shows that the most resistant allele, Cyp6g1-[BP], is greatly enriched in the top 5% of the phenotypic distribution and accounts for ∼16% of the underlying phenotypic variation in resistance to DDT. In contrast, copy number variation for another candidate resistance gene, Cyp12d1, is not associated with resistance. Thus the Cyp6g1 locus is a major contributor to DDT resistance in field populations, and evolution at this locus features multiple adaptive steps occurring in rapid succession

    Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript

    Get PDF
    Since the discovery of chromosomal inversions almost 100 years ago, how they are maintained in natural populations has been a highly debated issue. One of the hypotheses is that inversion breakpoints could affect genes and modify gene expression levels, although evidence of this came only from laboratory mutants. In humans, a few inversions have been shown to associate with expression differences, but in all cases the molecular causes have remained elusive. Here, we have carried out a complete characterization of a new human polymorphic inversion and determined that it is specific to East Asian populations. In addition, we demonstrate that it disrupts the ZNF257 gene and, through the translocation of the first exon and regulatory sequences, creates a previously nonexistent fusion transcript, which together are associated to expression changes in several other genes. Finally, we investigate the potential evolutionary and phenotypic consequences of the inversion, and suggest that it is probably deleterious. This is therefore the first example of a natural polymorphic inversion that has position effects and creates a new chimeric gene, contributing to answer an old question in evolutionary biology
    corecore