35 research outputs found

    TGF-β-dependent reprogramming of amino acid metabolism induces epithelial–mesenchymal transition in non-small cell lung cancers

    Get PDF
    Epithelial–mesenchymal transition (EMT)—a fundamental process in embryogenesis and wound healing—promotes tumor metastasis and resistance to chemotherapy. While studies have identified signaling components and transcriptional factors responsible in the TGF-β-dependent EMT, whether and how intracellular metabolism is integrated with EMT remains to be fully elucidated. Here, we showed that TGF-β induces reprogramming of intracellular amino acid metabolism, which is necessary to promote EMT in non-small cell lung cancer cells. Combined metabolome and transcriptome analysis identified prolyl 4-hydroxylase α3 (P4HA3), an enzyme implicated in cancer metabolism, to be upregulated during TGF-β stimulation. Further, knockdown of P4HA3 diminished TGF-β-dependent changes in amino acids, EMT, and tumor metastasis. Conversely, manipulation of extracellular amino acids induced EMT-like responses without TGF-β stimulation. These results suggest a previously unappreciated requirement for the reprogramming of amino acid metabolism via P4HA3 for TGF-β-dependent EMT and implicate a P4HA3 inhibitor as a potential therapeutic agent for cancer

    Paracrine IL-33 Stimulation Enhances Lipopolysaccharide-Mediated Macrophage Activation

    Get PDF
    BACKGROUND: IL-33, a member of the IL-1 family of cytokines, provokes Th2-type inflammation accompanied by accumulation of eosinophils through IL-33R, which consists of ST2 and IL-1RAcP. We previously demonstrated that macrophages produce IL-33 in response to LPS. Some immune responses were shown to differ between ST2-deficient mice and soluble ST2-Fc fusion protein-treated mice. Even in anti-ST2 antibody (Ab)-treated mice, the phenotypes differed between distinct Ab clones, because the characterization of such Abs (i.e., depletion, agonistic or blocking Abs) was unclear in some cases. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the precise role of IL-33, we newly generated neutralizing monoclonal Abs for IL-33. Exogenous IL-33 potentiated LPS-mediated cytokine production by macrophages. That LPS-mediated cytokine production by macrophages was suppressed by inhibition of endogenous IL-33 by the anti-IL-33 neutralizing mAbs. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that LPS-mediated macrophage activation is accelerated by macrophage-derived paracrine IL-33 stimulation

    Bioenabled surface-mediated growth of titania nanoparticles

    No full text
    A bio-enabled method is presented to prepare a monolayers of titania nanoparticles using polyelectrolyte surface with tethered recombinant silaffin (rSilC). The surface-tethered silaffin molecules can be aggregated to produce TiO2 nanoparticles and to prevent the large-scale aggregation. The study used polyelectrolyte LbL films to control silaffin adsorption and enhance nanoparticles nucleation and growth. The study used LbL films made by polyelectrolytes, poly(allylamine hydrochloride) (PAH), and poly(styrene sulfonate) (PSS). The method successfully produced multilayer films with thickness from 4 to 20 nm. It was observed during the study that the confinement of titania nanoparticles into nanoscale protein surface domains can prevent the formation of larger microscopic aggregates.close424

    Kinetics of GATA-3 gene expression in early polarizing and committed human T cells

    No full text
    Different transcription factors have been shown to control the transition of naive T cells into T helper 1 (Th1)/Th2 subsets. The T-cell-specific transcription factor GATA-3 is known to be selectively expressed in murine developing Th2 cells and to exert a positive action on Th2-specific cytokine production. Investigating GATA-3 gene regulation in human T cells we have found that naive T cells highly express GATA-3, and during early T2 or T1 polarization, respectively, they either maintain or quickly down-regulate expression. In developing T2 cells, as well as in committed Th2 cell lines and clones, we found a positive correlation among GATA-3, interleukin (IL)-5 and IL-4 gene expression kinetics, supporting the positive action of GATA-3 on Th2-specific cytokine production. A possible relationship between GATA-3 gene expression and the down-regulation of the IL-12 receptor (β2-chain; IL-12Rβ2) gene was evident only in the early phases of T2 polarization (within 24 hr), and not demonstrated at later times. During T-cell commitment the presence of IL-4 in the culture was essential to maintain or enhance GATA-3 transcription, while IL-12 was not necessary for full repression of GATA-3. Finally, we showed selective GATA-3 up-regulation in human Th2 cell lines and clones and the maintainance of a low basal level of GATA-3 expression in Th1 cells upon activation
    corecore