136 research outputs found

    Identification of Anaplasma marginale Type IV Secretion System Effector Proteins

    Get PDF
    Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS). The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now.Published copyLockwood, S., D. E. Voth, K. A. Brayton, P. A. Beare, W. C. Brown, R. A. Heinzen, and S. L. Broschat, Identification of Anaplasma marginale type IV secretion system effector proteins, PLoS ONE, Vol. 6, No. 11, e7724, Nov. 2011. DOI: 10.1371/journal.pone.0027724

    Transmission Electron Microscopy Reveals Distinct Macrophage- and Tick Cell-Specific Morphological Stages of Ehrlichia chaffeensis

    Get PDF
    Background: Ehrlichia chaffeensis is an emerging tick-borne rickettsial pathogen responsible for human monocytic ehrlichiosis. Despite the induction of an active host immune response, the pathogen has evolved to persist in its vertebrate and tick hosts. Understanding how the organism progresses in tick and vertebrate host cells is critical in identifying effective strategies to block the pathogen transmission. Our recent molecular and proteomic studies revealed differences in numerous expressed proteins of the organism during its growth in different host environments. Methodology/Principal Findings: Transmission electron microscopy analysis was performed to assess morphological changes in the bacterium within macrophages and tick cells. The stages of pathogen progression observed included the attachment of the organism to the host cells, its engulfment and replication within a morulae by binary fission and release of the organisms from infected host cells by complete host cell lysis or by exocytosis. E. chaffeensis grown in tick cells was highly pleomorphic and appears to replicate by both binary fission and filamentous type cell divisions. The presence of Ehrlichia-like inclusions was also observed within the nucleus of both macrophages and tick cells. This observation was confirmed by confocal microscopy and immunoblot analysis. Conclusions/Significance: Morphological differences in the pathogen’s progression, replication, and processing within macrophages and tick cells provide further evidence that E. chaffeensis employs unique host-cell specific strategies in support of adaptation to vertebrate and tick cell environments

    First Report of 13 Species of Culicoides (Diptera: Ceratopogonidae) in Mainland Portugal and Azores by Morphological and Molecular Characterization

    Get PDF
    The genus Culicoides (Diptera: Ceratopogonidae) contains important vectors of animal and human diseases, including bluetongue, African horse sickness and filariosis. A major outbreak of bluetongue occurred in mainland Portugal in 2004, forty eight years after the last recorded case. A national Entomological Surveillance Plan was initiated in mainland Portugal, Azores and the Madeira archipelagos in 2005 in order to better understand the disease and facilitate policy decisions. During the survey, the most prevalent Culicoides species in mainland Portugal was C. imicola (75.3%) and species belonging to the Obsoletus group (6.5%). The latter were the most prevalent in Azores archipelago, accounting for 96.7% of the total species identified. The Obsoletus group was further characterized by multiplex Polymerase Chain Reaction to species level showing that only two species of this group were present: C. obsoletus sensu strictu (69.6%) and C. scoticus (30.4%). Nine species of Culicoides were detected for the first time in mainland Portugal: C. alazanicus, C. bahrainensis, C. deltus, C. lupicaris, C. picturatus, C. santonicus, C. semimaculatus, C. simulator and C. subfagineus. In the Azores, C. newsteadi and C. circumscriptus were identified for the first time from some islands, and bluetongue vectors belonging to the Obsoletus group (C. obsoletus and C. scoticus) were found to be widespread

    Bayesian Space-Time Patterns and Climatic Determinants of Bovine Anaplasmosis

    Get PDF
    Citation: Hanzlicek, G. A., Raghavan, R. K., Ganta, R. R., & Anderson, G. A. (2016). Bayesian Space-Time Patterns and Climatic Determinants of Bovine Anaplasmosis. Plos One, 11(3), 13. doi:10.1371/journal.pone.0151924The space-time pattern and environmental drivers (land cover, climate) of bovine anaplasmosis in the Midwestern state of Kansas was retrospectively evaluated using Bayesian hierarchical spatio-temporal models and publicly available, remotely-sensed environmental covariate information. Cases of bovine anaplasmosis positively diagnosed at Kansas State Veterinary Diagnostic Laboratory (n = 478) between years 2005-2013 were used to construct the models, which included random effects for space, time and space-time interaction effects with defined priors, and fixed-effect covariates selected a priori using an univariate screening procedure. The Bayesian posterior median and 95% credible intervals for the space-time interaction term in the best-fitting covariate model indicated a steady progression of bovine anaplasmosis over time and geographic area in the state. Posterior median estimates and 95% credible intervals derived for covariates in the final covariate model indicated land surface temperature (minimum), relative humidity and diurnal temperature range to be important risk factors for bovine anaplasmosis in the study. The model performance measured using the Area Under the Curve (AUC) value indicated a good performance for the covariate model (>0.7). The relevance of climatological factors for bovine anaplasmosis is discussed

    Occurrence Patterns of Afrotropical Ticks (Acari: Ixodidae) in the Climate Space Are Not Correlated with Their Taxonomic Relationships

    Get PDF
    Foci of tick species occur at large spatial scales. They are intrinsically difficult to detect because the effect of geographical factors affecting conceptual influence of climate gradients. Here we use a large dataset of occurrences of ticks in the Afrotropical region to outline the main associations of those tick species with the climate space. Using a principal components reduction of monthly temperature and rainfall values over the Afrotropical region, we describe and compare the climate spaces of ticks in a gridded climate space. The dendrogram of distances among taxa according to occurrences in the climate niche is used to draw functional groups, or clusters of species with similar occurrences in the climate space, as different from morphologically derived (taxonomical) groups. We aim to further define the drivers of species richness and endemism at such a grid as well as niche similarities (climate space overlap) among species. Groups of species, as defined from morphological traits alone, are uncorrelated with functional clusters. Taxonomically related species occur separately in the climate gradients. Species belonging to the same functional group share more niche among them than with species in other functional groups. However, niche equivalency is also low for species within the same taxonomic cluster. Thus, taxa evolving from the same lineage tend to maximize the occupancy of the climate space and avoid overlaps with other species of the same taxonomic group. Richness values are drawn across the gradient of seasonal variation of temperature, higher values observed in a portion of the climate space with low thermal seasonality. Richness and endemism values are weakly correlated with mean values of temperature and rainfall. The most parsimonious explanation for the different taxonomic groups that exhibit common patterns of climate space subdivision is that they have a shared biogeographic history acting over a group of ancestrally co-distributed organisms

    Chloramphenicol Selection of IS10 Transposition in the cat Promoter Region of Widely Used Cloning Vectors

    Get PDF
    The widely used pSU8 family of cloning vectors is based on a p15A replicon and a chloramphenicol acetyltransferase (cat) gene conferring chloramphenicol resistance. We frequently observed an increase in the size of plasmids derived from these vectors. Analysis of the bigger molecular species shows that they have an IS10 copy inserted at a specific site between the promoter and the cat open reading frame. Promoter activity from both ends of IS10 has been reported, suggesting that the insertion events could lead to higher CAT production. Insertions were observed in certain constructions containing inserts that could lead to plasmid instability. To test the possibility that IS10 insertions were selected as a response to chloramphenicol selection, we have grown these constructs in the presence of different amounts of antibiotic and we observed that insertions arise promptly under higher chloramphenicol selective pressure. IS10 is present in many E. coli laboratory strains, so the possibility of insertion in constructions involving cat-containing vectors should be taken into account. Using lower chloramphenicol concentrations could solve this problem

    HlSRB, a Class B Scavenger Receptor, Is Key to the Granulocyte-Mediated Microbial Phagocytosis in Ticks

    Get PDF
    Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we have reported on recombinant HlSRB, a 50-kDa protein with one hydrophobic SRB domain from the hard tick, Haemaphysalis longicornis. Here, we show that HlSRB plays vital roles in granulocyte-mediated phagocytosis to invading Escherichia coli and contributes to the first-line host defense against various pathogens. Data clearly revealed that granulocytes that up-regulated the expression of cell surface HlSRB are almost exclusively involved in hemocyte-mediated phagocytosis for E. coli in ticks, and post-transcriptional silencing of the HlSRB-specific gene ablated the granulocytes' ability to phagocytose E. coli and resulted in the mortality of ticks due to high bacteremia. This is the first report demonstrating that a scavenger receptor molecule contributes to hemocyte-mediated phagocytosis against exogenous pathogens, isolated and characterized from hematophagous arthropods

    Activation of Epidermal Growth Factor Receptor Is Required for NTHi-Induced NF-κB-Dependent Inflammation

    Get PDF
    Inflammation is a hallmark of many serious human diseases. Nontypeable Haemophilus influenzae (NTHi) is an important human pathogen causing respiratory tract infections in both adults and children. NTHi infections are characterized by inflammation, which is mainly mediated by nuclear transcription factor-kappa B (NF-κB)-dependent production of proinflammatory mediators. Epidermal growth factor receptor (EGFR) has been shown to play important roles in regulating diverse biological processes, including cell growth, differentiation, apoptosis, adhesion, and migration. Its role in regulating NF-κB activation and inflammation, however, remains largely unknown.In the present study, we demonstrate that EGFR plays a vital role in NTHi-induced NF-κB activation and the subsequent induction of proinflammatory mediators in human middle ear epithelial cells and other cell types. Importantly, we found that AG1478, a specific tyrosine kinase inhibitor of EGFR potently inhibited NTHi-induced inflammatory responses in the middle ears and lungs of mice in vivo. Moreover, we found that MKK3/6-p38 and PI3K/Akt signaling pathways are required for mediating EGFR-dependent NF-κB activation and inflammatory responses by NTHi.Here, we provide direct evidence that EGFR plays a critical role in mediating NTHi-induced NF-κB activation and inflammation in vitro and in vivo. Given that EGFR inhibitors have been approved in clinical use for the treatment of cancers, current studies will not only provide novel insights into the molecular mechanisms underlying the regulation of inflammation, but may also lead to the development of novel therapeutic strategies for the treatment of respiratory inflammatory diseases and other inflammatory diseases

    A Rickettsiella Bacterium from the Hard Tick, Ixodes woodi: Molecular Taxonomy Combining Multilocus Sequence Typing (MLST) with Significance Testing

    Get PDF
    Hard ticks (Acari: Ixodidae) are known to harbour intracellular bacteria from several phylogenetic groups that can develop both mutualistic and pathogenic relationships to the host. This is of particular importance for public health as tick derived bacteria can potentially be transmitted to mammals, including humans, where e.g. Rickettsia or Coxiella act as severe pathogens. Exact molecular taxonomic identification of tick associated prokaryotes is a necessary prerequisite of the investigation of their relationship to both the tick and possible vertebrate hosts. Previously, an intracellular bacterium had been isolated from a monosexual, parthenogenetically reproducing laboratory colony of females of the hard tick, Ixodes woodi Bishopp, and had preliminarily been characterized as a “Rickettsiella-related bacterium”. In the present molecular taxonomic study that is based on phylogenetic reconstruction from both 16 S ribosomal RNA and protein-encoding marker sequences complemented with likelihood-based significance testing, the bacterium from I. woodi has been identified as a strain of the taxonomic species Rickettsiella grylli. It is the first time that a multilocus sequence typing (MLST) approach based on a four genes comprising MLST scheme has been implemented in order to classify a Rickettsiella-like bacterium to this species. The study demonstrated that MLST holds potential for a better resolution of phylogenetic relationships within the genus Rickettsiella, but requires sequence determination from further Rickettsiella-like bacteria in order to complete the current still fragmentary picture of Rickettsiella systematics

    Consistent Pattern of Local Adaptation during an Experimental Heat Wave in a Pipefish-Trematode Host-Parasite System

    Get PDF
    Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle) as a host and its digenean trematode parasite (Cryptocotyle lingua). In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes) compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes) was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming
    corecore