79 research outputs found

    A Water-Bridged H-Bonding Network Contributes to the Catalysis of the SAM-Dependent C-Methyltransferase HcgC

    Get PDF
    [Fe]-hydrogenase hosts an iron-guanylylpyridinol (FeGP) cofactor. The FeGP cofactor contains a pyridinol ring substituted with GMP, two methyl groups, and an acylmethyl group. HcgC, an enzyme involved in FeGP biosynthesis, catalyzes methyl transfer from S-adenosylmethionine (SAM) to C3 of 6-carboxymethyl-5-methyl-4-hydroxy-2-pyridinol (2). We report on the ternary structure of HcgC/S-adenosylhomocysteine (SAH, the demethylated product of SAM) and 2 at 1.7 angstrom resolution. The proximity of C3 of substrate 2 and the S atom of SAH indicates a catalytically productive geometry. The hydroxy and carboxy groups of substrate 2 are hydrogen-bonded with I115 and T179, as well as through a series of water molecules linked with polar and a few protonatable groups. These interactions stabilize the deprotonated state of the hydroxy groups and a keto form of substrate 2, through which the nucleophilicity of C3 is increased by resonance effects. Complemented by mutational analysis, a structure-based catalytic mechanism was proposed

    Structural and spectroscopic characterization of a HdrA-like subunit from Hyphomicrobium denitrificans

    Get PDF
    Funding Information: We thank Laurenz Heidrich for help with statistical analyses. This work was supported by grant Da 351/8‐1 (to CD) from the Deutsche Forschungsgemeinschaft and Fundação para a CiĂȘncia e Tecnologia (Portugal) (grant PTDC/BIA‐BQM/29118 and R&D units MOSTMICRO‐ITQB (UIDB/04612/2020 and UIDP/04612/2020), and European Union's Horizon 2020 research and innovation program (grant agreement No 810856). Open access funding enabled and organized by Projekt DEAL. Publisher Copyright: © 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies Copyright: Copyright 2021 Elsevier B.V., All rights reserved.Many bacteria and archaea employ a novel pathway of sulfur oxidation involving an enzyme complex that is related to the heterodisulfide reductase (Hdr or HdrABC) of methanogens. As a first step in the biochemical characterization of Hdr-like proteins from sulfur oxidizers (sHdr), we structurally analyzed the recombinant sHdrA protein from the Alphaproteobacterium Hyphomicrobium denitrificans at 1.4 Å resolution. The sHdrA core structure is similar to that of methanogenic HdrA (mHdrA) which binds the electron-bifurcating flavin adenine dinucleotide (FAD), the heart of the HdrABC-[NiFe]-hydrogenase catalyzed reaction. Each sHdrA homodimer carries two FADs and two [4Fe–4S] clusters being linked by electron conductivity. Redox titrations monitored by electron paramagnetic resonance and visible spectroscopy revealed a redox potential between −203 and −188 mV for the [4Fe–4S] center. The potentials for the FADH‱/FADH− and FAD/FADH‱ pairs reside between −174 and −156 mV and between −81 and −19 mV, respectively. The resulting stable semiquinone FADH‱ species already detectable in the visible and electron paramagnetic resonance spectra of the as-isolated state of sHdrA is incompatible with basic principles of flavin-based electron bifurcation such that the sHdr complex does not apply this new mode of energy coupling. The inverted one-electron FAD redox potentials of sHdr and mHdr are clearly reflected in the different FAD-polypeptide interactions. According to this finding and the assumption that the sHdr complex forms an asymmetric HdrAAâ€ČB1C1B2C2 hexamer, we tentatively propose a mechanism that links protein-bound sulfane oxidation to sulfite on HdrB1 with NAD+ reduction via lipoamide disulfide reduction on HdrB2. The FAD of HdrA thereby serves as an electron storage unit. Database: Structural data are available in PDB database under the accession number 6TJR.publishe

    Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment

    Get PDF
    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl) succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O-2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and naphthalene), W-cofactor-containing enzymes for reductive dearomatization of benzoyl-CoA (class II benzoyl-CoA reductase) in obligate anaerobes and addition of water to acetylene, fermentative formation of cyclohexanecarboxylate from benzoate, and methanogenic degradation of hydrocarbons

    Catabolic Pathways and Enzymes Involved in Anaerobic Methane Oxidation

    No full text
    # Springer International Publishing AG 2017 M. Boll (ed.), Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, Handbook of Hydrocarbon and Lipid Microbiology, DOI 10.1007/978-3-319-33598-8_3-1Microbes use two distinct catabolic pathways for life with the fuel methane: aerobic methane oxidation carried out by bacteria and anaerobic methane oxidation carried out by archaea. The archaea capable of anaerobic oxidation of methane, anaerobic methanotrophs (ANME), are phylogenetically related to methanogens. While the carbon metabolism in ANME follows the pathway of reverse methanogenesis, the mode of electron transfer from methane oxidation to the terminal oxidant is remarkably versatile. This chapter discusses the catabolic pathways of methane oxidation coupled to the reduction of nitrate, sulfate, and metal oxides. Methane oxidation with sulfate and metal oxides are hypothesized to involve direct interspecies electron transfer and extracellular electron transfer. Cultivation of ANME, their mechanisms of energy conservation, and details about the electron transfer pathways to the ultimate oxidants are rather new and quickly developing research fields, which may reveal novel metabolisms and redox reactions. The second section focuses on the carbon catabolism from methane to CO2 and the biochemistry in ANME with its unique enzymes containing Fe, Ni, Co, Mo, and W that are compared with their homologues found in methanogens.Peer reviewe
    • 

    corecore