55 research outputs found

    Comparison of clinical and physical measures of image quality in chest PA and pelvis AP views at varying tube voltages

    No full text
    Image quality in digital chest PA and pelvis AP was assessed using two different methods; one based on observations of images of an anthropomorphic phantom, one based on computer modelling using an anthropomorphic voxel phantom. The tube voltage was varied within a broad range (50-150 kV), including those values typically used with screen-film radiography. The tube charge was altered so that approximately the same effective dose was achieved in the modelled patient (anthropomorphic phantom). Two x-ray units were employed using a digital image detector (computed radiography, CR, system) with standard tube filtration and anti-scatter device. Clinical image quality was assessed by a group of radiologists using a visual grading analysis (VGA) technique based on the revised CEC image criteria. Physical image quality was derived from the computer model in terms of the signal-to-noise ratio, SNR for fixed effective dose in the voxel phantom. The computer model uses Monte Carlo simulations of the patient and complete imaging system. Both the VGAS (visual grading analysis score) and SNR increase with decreasing tube voltage in both chest PA and pelvis AP examinations, indicating superior performance if lower tube voltages than used today are employed in digital radiology. A positive correlation between clinical and physical measures of image quality was found. The pros and cons of using lower tube voltages with CR digital radiography than typically used in analogue screen-film radiography are discussed as well as the relevance of using VGAS and quantum noise SNR as measures of image quality
    corecore