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Abstract Early Holocene summer warmth drove dramatic Greenland ice sheet (GIS) retreat. Subsequent
insolation-driven cooling caused GIS margin readvance to late Holocene maxima, from which ice margins
are now retreating. We use '°Be surface exposure ages from four locations between 69.4°N and 61.2°N to
date when in the early Holocene south to west GIS margins retreated to within these late Holocene maximum
extents. We find that this occurred at 11.1£0.2 ka to 10.6 + 0.5 ka in south Greenland, significantly earlier
than previous estimates, and 6.8 + 0.1 ka to 7.9+ 0.1 ka in southwest to west Greenland, consistent with
existing '°Be ages. At least in south Greenland, these '°Be ages likely provide a minimum constraint for when
on a multicentury timescale summer temperatures after the last deglaciation warmed above late Holocene
temperatures in the early Holocene. Current south Greenland ice margin retreat suggests that south
Greenland may have now warmed to or above earliest Holocene summer temperatures.

1. Introduction

The most recent Northern Hemisphere millennia-long warm climate interval occurred during the early
Holocene. Elevated boreal summer insolation relative to present and attendant summer warming [Kaufman
et al.,, 2004; Marcott et al.,, 2013] caused a negative Greenland ice sheet (GIS) mass balance, which drove the
GIS to a smaller than present extent [Kelly, 1980; Bennike and Bjérck, 2002; Tarasov and Peltier, 2002; Simpson
et al., 2009; Funder et al., 2011]. Boreal summers subsequently warmed into the Holocene thermal maximum
(HTM), which varied in timing across the Northern Hemisphere [e.g., Kaufman et al., 2004; Carlson et al., 2008].
The decline in boreal summer insolation through the Holocene led to eventual summer cooling and
advances of GIS margins, with the coldest summer temperatures and maximum ice extent occurring in the
late Holocene. Over the last century, south and west Greenland summers have warmed ~1°C [Hanna et al.,
2009] and GIS margins are retreating back from their late Holocene maximum extents [van den Broeke et al.,
2009; Kelley et al., 2012].

Observations and modeling suggest that marine-terminating GIS margins can respond to climate change
within decades [Andresen et al., 2012; Kelley et al., 2012; Nick et al., 2013], while land-terminating margins can
respond within a century to centuries [Tarasov and Peltier, 2002; Simpson et al., 2009; Kelley et al., 2012]. As
there are no notable major changes in Greenland ice accumulation over the Holocene [Cuffey and Clow, 19971
and assuming ice margin position tracked regional summer temperatures on a centuries to longer timescale,
dating when GIS margins retreated within their late Holocene limits in the early Holocene could place a
minimum constraint on when after the last deglaciation summer temperatures rose consistently above
the eventual late Holocene temperature minimum on a multicentennial to millennial timescale [Kelly, 1980;
Funder et al., 2011; Young et al., 2011; Kelley et al., 2012; Miller et al., 2013].

Outside of the well-studied Disko Bugt region in west Greenland (~70°N) [Briner et al., 2010, 2014; Corbett et al.,
2011; Young et al., 2011, 2013a; Kelley et al., 2012], data directly constraining Holocene south to west GIS
margin history are limited [e.g., Levy et al., 2012; Larsen et al., 2014]. Consequently, much of the GIS Holocene
history is based on inferences from minimum- and maximum-limiting '*C dates that do not necessarily
closely constrain when ice margins retreated to a smaller than late Holocene extent [Kelly, 1980;
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2002; Larsen et al., 2011]. Because of
these loose '“C-based constraints, it is
still unclear if Greenland ice retreated
to a smaller than late Holocene extent
during the HTM and peak warmth or
prior to the HTM. Here we directly date
with "°Be surface exposure ages the
last time that south GIS margins
retreated past their maximum late
Holocene extents (Figure 1). We also
present new '°Be data from southwest
and west Greenland, complimenting
existing '°Be ages from these regions.
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2. Methods

We collected '°Be samples from boulders
and bedrock near Pakitsoq in west
Greenland, Kangerlussuaq in southwest
Greenland, and near Paamiut and
Narsarsuaq in south Greenland
(Figures 1 and 2, and Figure S1 and
Table S1 in the supporting information).

Figure 1. Greenland sample locations indicated by red symbols (see Figures 2 We chose these regions because they

and S1). Locations of other south to west GIS margin constraints and

temperature records indicated. 1=Long et al. [2006], Hdkansson et al. [2014];
2 = Weidick et al. [1990], Briner et al. [2010, 2014]; 3= Corbett et al. [2011],
Young et al. [2011, 2013a], Axford et al. [2013]; 4 = Weidick et al. [1990],
Kelley et al.[2012]; 5 = Levy et al. [2012]; 6 = van Tatenhove et al.[1996], Willemse
and Toérnqvist [1999]; 7=D'Andrea et al. [2011]; 8=Larsen et al. [2014];
9 = Weidick et al. [2004]; 10=Kaplan et al. [2002], Wooller et al. [2004],
Fréchette and de Veernal [2009]; 11 = Larsen et al. [2011]; 12 = Nelson et al. [2014].

span ~9° of latitude and thus climate
settings from relatively warm and wet
south Greenland to cooler and drier
southwest and west Greenland [Hanna
et al, 2009]. We also selected each region
because it has at least one Holocene

lake summer temperature record to
compare the '°Be chronologies against.

We made a specific point of sampling multiple boulders and bedrock from a small region (indicated in
Figure 2 as a point, see Figure S1 for detailed locations) that has a simple geological interpretation,
minimizing postdepositional geomorphic effects on the samples. In all study areas, '°Be samples are from
near the late Holocene limit and therefore constrain when after the last glacial period the ice margin had
retreated as far inland as its eventual late Holocene maximum extent. Near Pakitsoq, Kangerlussuag, and
Paamiut, the late Holocene limit dates to the historical period and is within 0.1-0.5 km of the currently
retreating ice margin (Figure 2d) [Kelly, 1980; Kelley et al., 2012]. Near Narsarsuag, a late Holocene advance
of the outlet glacier Kiagtat sermiat ended ~1.5 ka, which deposited the Narsarsuaq moraine 1.5-5.5 km

in front of the historical limit (Figure 2d) [Kelly, 1980; Winsor et al., 2014]. We sampled boulders just outside of
the Narsarsuag moraine. Where possible, we sampled from both terrestrial- and marine-terminating ice
margins to assess any effect of dynamic discharge on the early Holocene retreat of marine ice margins

via iceberg calving to the ocean and additional ocean temperature effects on ice margin ablation
[e.g., van den Broeke et al., 2009; Andresen et al., 2012; Nick et al., 2013].

Twenty-seven erratic-boulder and two bedrock samples were collected and analyzed for '°Be surface
exposure dating. All samples were from above the marine limit and thus date ice margin retreat. With the
exception of five boulder samples from a small @rkendalen moraine just outside of the Russell glacier
historical moraine (Figure 2b) [van Tatenhove et al., 1996], all sampled erratic boulders were resting directly
on bedrock (Table S1). Ages were determined using the northeast North American '°Be production rate
[Balco et al., 2009] that is applicable to Greenland [Young et al., 2013b] and the Lal/Stone time-varying
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Figure 2. Ice margin '%8e sampling locations (white squares) with sample age and 10 analytical uncertainty; italic-underlined
indicates an outlier. (a) Pakitsoq: dashed line is the inner Fjord moraine, white circles are 108e samples of Young et al.
[2011, 2013a], and black circles are the 10p¢ samples of Corbett et al. [2011] (additional Kelley et al. [2012] samples
are further south, off the figure). (b) Kangerlussuaq: dashed lines are the @rkendalen moraines, white circles are
the '%Be samples of Levy et al. [2012]. (c) Paamiut. (d) Narsarsuagq: thin dashed line is the Narsarsuag moraine; white
circle is the average 108e ages of Nelson et al. [2014]. The thin white lines denote the historical ice margin extent.

production scaling (Figure S2 and Table S2) [Lal, 1991; Stone, 2000]. Because the analytical uncertainty of each
age varies between samples and this range in analytical precision should be accounted for when estimating
the mean age of the sample population, we calculate the error-weighted mean age for samples collected
from the same geological setting and report this with the standard error of the mean as the best estimate
of when ice retreated from that location. We recalculated existing '°Be ages using this same approach,
production rate, and scaling to directly compare ages. Recalculated '°Be ages are not significantly different
from published '°Be ages. We also recalibrated all discussed '*C dates (Calib7.0) [Stuiver et al., 2014]. When
comparing '°Be ages to calendar ages, there is an additional uncertainty in the '°Be production rate of ~2%
[Young et al., 2013b], which is minor relative to the uncertainty of the mean age; we do not propagate

this uncertainty into the standard error of the mean.

3. 1°Be Results

The four boulders from just outside the Narsarsuagq moraine have an error-weighted mean age of 11.3+0.2 ka,
dating the last time KiagtGt sermiat was near its late Holocene maximum extent (Figure 2d). Near Paamiut
(Figure 2¢), five boulder samples adjacent to the historical inland ice margin have an error-weighted mean
age of 10.8 0.1 ka. For the other five boulder samples from the outlet glacier Nigerdlikasik Breae, we

identify one young outlying '°Be age (PA10-18, 8.0+ 0.5 ka) (Figure 2c). Removing this outlier results in an
error-weighted mean age for the remaining four samples of 10.6 + 0.5 ka. Inland from Kangerlussuag, we
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Figure 3. Holocene Greenland records. Isolated symbols show GIS margin
constraints: red squares are our mean 108e ages, blue circles are existing
mean '%Be ages (note 1 sigma uncertainty bars are smaller than the sym-
bol), red bars are 14C dates on terrestrial and marine (in this case reservoir
corrected) materials reworked into historical moraines, and brown bars are
14¢ dates from organic intervals in ice-marginal lakes that received glacial
sediment during the early and late Holocene. (a) West Greenland A tem-
perature record (green) [Axford et al., 2013] with large green circle showing
1990-2000 Common Era (C.E.) average A temperature from lllulisat in
Disko Bugt relative to 1880-1890 C.E. [Hanna et al., 2009]. 108e ages (our
study; Corbett et al. [2011]; Young et al. [2011, 2013a]; Kelley et al. [2012])
and "*C dates [Kelly, 1980; Weidick et al,, 1990; Briner et al., 2010, 2014;
Kelley et al., 2012; Hdkansson et al., 2014]. (b) Southwest Greenland A
temperature records (orange solid Braya Sg, dashed Lake E; smoothed to
century timescale due to higher sample resolution than other records)
[D'Andrea et al., 2011] and 10ga ages (our study; Levy et al. [2012]). (c) South
Greenland A temperature records from pollen (purple line) [Fréchette and
de Vernal, 2009] and chironomids (purple line with symbols) [Wooller et al.,
2004] with large purple circle showing 1990-2000 C.E. average A tem-
perature from Narsarsuaq relative to 1880-1890 C.E. [Hanna et al., 2009].
10ge ages (our study; Nelson et al. [2014]) and T4C dates [Kelly, 1980; Kaplan
et al., 2002; Weidick et al., 2004; Larsen et al., 2011]. (d) GISP2 accumulation
rate (black) [Cuffey and Clow, 1997]. (e) GISP2 melt layers (light blue) [Alley
and Anandakrishnan, 1995]. (f) GRIP (blue) and Dye 3 (red) borehole A
temperature [Dahl-Jensen et al., 1998].

exclude one young outlier (K08-14,
5.3+0.3 ka) from the five samples from
the @rkendalen moraine next to Russell
glacier (Figure 2b). The remaining four
boulder samples have an error-weighted
mean age of 7.0+ 0.3 ka. Another three
boulder samples from just outside of the
late Holocene inland margin have an
error-weighted mean age of 6.8 +0.1 ka
(Figure 2b). Near Pakitsoq in west
Greenland (Figure 1), five boulder
samples and two bedrock samples from
just outside of the GIS late Holocene
margin have an error-weighted mean
age of 79+0.1 ka (Figure 2a).

4. Early Holocene Ice Margin
Retreat Pattern

Our '°Be ages from just outside of the
Narsarsuaq moraine of 11.3+0.2 ka
agree with two adjacent '°Be ages
from a new boulder (11.5 £ 0.3 ka)-
bedrock (10.8 £0.2 ka) pair measured
to test for nuclide inheritance

(Figure 2d) [Nelson et al., 2014].
Including these two ages, we calculate
an error-weighted mean and standard
error of 11.1+0.2 ka (n=6) (Figure 3c),
which agrees with minimum-limiting
¢ dates from >15 km outside of the
Narsarsuag moraine that show ice
retreat before 9.8 +£0.3 ka (shell
sample) [Weidick et al., 2004] and
10.8+0.2 ka (bulk organic sample)
[Larsen et al., 2011]. Reworked organic
material in historical moraines and
intervals of organic sediment
deposition in ice-marginal lakes
suggest that ice had retreated within
its historical extent in south Greenland
before ~9.1 ka (Figure 3c) [Kelly, 1980;
Kaplan et al., 2002; Weidick et al., 2004;
Larsen et al., 2011]. Because KiagtGt
sermiat is a land-terminating outlet
glacier, climate effects on surface mass
balance rather than dynamic discharge
should control this early

Holocene retreat.

Near Paamiut, our inland ice mean '°Be age of 10.8 +0.1 ka and outlet glacier mean '°Be age of 10.6 + 0.5 ka
are consistent with a minimum-limiting '*C date of 8.7 £0.1 ka from ~3 km down fjord of the '°Be ages
[Weidick et al., 2004]. The similar timing of retreat between the outlet glacier and the inland ice margin
suggests that climate rather than dynamic discharge was responsible for driving early Holocene ice retreat on
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at least a century timescale. Our Paamiut '°Be ages are also consistent with the Larsen et al. [2014] '°Be ages
of 10.3+0.2 ka (n=3) from near ice margins inland of Nuuk (Figure 1).

Our '°Be ages from near Kangerlussuaq agree with the '°Be ages of Levyetal [2012]. The 7.0+ 0.3 ka %Be age
for the @rkendalen moraine next to Russell glacier are similar to the @rkendalen moraine age of 6.8 +0.2 ka
(n=4) of Levy et al. [2012] (Figure 2b). The Levy et al. [2012] 10g¢ ages of 6.9+0.2 ka (n=5) next to the outlet
glacier Isunnguata Sermia are consistent with our '°Be ages of 6.8+ 0.1 ka from where Russell glacier and
Isunnguata Sermia meet at the inland ice (Figure 2b). All of these '°Be ages are consistent with the minimum-
limiting *C date of 4.6+ 0.1 ka from next to the modern Russell glacier moraine [van Tatenhove et al., 1996]
and of 7.3£0.1 ka from a lake ~2 km down valley of Russell glacier [Willemse and Térnqvist, 1999]. Because
these are land-terminating ice margins, climate change was likely the driving force behind ice retreat.

Near Pakitsoq in west Greenland, our mean '°Be age of 7.9+ 0.1 ka is consistent with a minimum-limiting **C
date of 7.6+ 0.1 ka from ~20 km west of the historical ice margin [Long et al., 2006] and 6.6 + 0.1 ka from
~3 km west of the historical ice margin [Hdkansson et al., 2014]. Our '°Be ages are older than, but still
consistent with, the timing of organic deposition in a Pakitsoq ice-marginal lake beginning before 54+0.1 ka
(Figure 3a) [Hakansson et al, 2014]. These '°Be ages agree with error-weighted mean '°Be bedrock boulder
ages in similar glacial-geologic settings of 7.7 +£0.2 ka (n=6), 7.5+ 0.1 ka (n=8), and 7.1 £0.1 ka (n=2) from
~10, 25, and 80 km south of Pakitsoq, respectively (Figures 1, 2a, and 3a) [Corbett et al,, 2011; Young et al,, 2013a].
The °Be ages also concur with C dates on organic material reworked into historical moraines and periods

of organic deposition in ice-marginal lakes that record smaller than late Holocene ice south of Pakitsoq before
~5.7 ka and ~7.2 ka, respectively (Figure 3a) [Weidick et al., 1990; Briner et al., 2010, 2014; Kelley et al., 2012].
The general agreement between terrestrial and marine ice margins suggests that climate drove early
Holocene ice margin retreat on a multicentennial timescale, with local topography and ice margin setting
(terrestrial or marine) potentially explaining variability between sites [Corbett et al,, 2011; Young et al., 2013a].

In summary, our '°Be ages on the timing of early Holocene ice retreat are supported by previous evidence
(*C ages and in some cases '°Be ages). At sites in the south, our new '°Be ages significantly refine
understanding of the ice margin history, providing direct dates on ice retreat previously constrained only by
minimum-limiting '*C ages. We find that ice margins retreated to within their late Holocene maximum
extents at 11.1£0.2 ka to 10.6 £ 0.5 ka in south Greenland, significantly earlier than previous estimates from
the south and contrasting with 6.8 £ 0.1 ka to 7.9+ 0.1 ka in southwest to west Greenland. This difference in
retreat timing is similar on a century timescale for both terrestrial and marine ice margins and is consequently
not likely due to local ice margin setting.

Dates on ice-margin retreat will reflect a complex interplay between factors affecting the timing and degree
of early Holocene inland ice retreat and the magnitude of late Holocene ice advance. Briner et al. [2013]
hypothesized that difference in timing of GIS margin retreat to a smaller than late Holocene extent reflected
greater inland margin retreat from the coast in west Greenland and/or more extensive late Holocene ice
advance in south Greenland. The greater amount of ice-free land in southwest and west Greenland relative to
south Greenland (Figure 1) would support this hypothesis [Briner et al., 2013], if Holocene climate change
were uniform across south to west Greenland. Relative sea level records provide an additional constraint and
suggest a longer period of inland ice retreat in west Greenland during the middle Holocene and an earlier
onset of late Holocene ice readvance in south Greenland [Long et al., 2011; Sparrenbom et al., 2013; Woodroffe
et al., 2014]. Ultimately, these ice-margin changes are driven by climate change and the earlier deglacial ages
in south Greenland could be due to greater warming in the earliest Holocene in south Greenland relative to
southwest and west Greenland. Indeed, peak Holocene warmth may have been over 1 ka earlier in south
Greenland [Andresen et al., 2004; Wooller et al., 2004; Fréchette and de Vernal, 2009; Massa et al., 2012] relative
to southwest and west Greenland [D'Andrea et al., 2011; Axford et al., 2013], which would be consistent
with earlier warming in the south driving south Greenland ice within its late Holocene limit before southwest
and west Greenland ice.

5. Ice Margin Response to Early Holocene Warmth

What constraints can be placed upon the temperatures that drove these ice margins to retreat to within their
eventual late Holocene limits? Because GIS accumulation did not significantly change during the Holocene
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relative to earlier deglacial changes (Figure 3d) [Cuffey and Clow, 1997], Holocene GIS margin retreat and advance
were likely driven mainly by summer temperature. This assumption neglects the direct effect on surface melt of
increased shortwave radiation in the early Holocene relative to the late Holocene. However, shortwave radiation is
thought to play a smaller role in driving glacial retreat than summer temperature [Kaufman et al., 2004; Carlson
et al, 2008; Miller et al,, 2013] and is likely within the uncertainty of the temperature estimates [Wooller et al., 2004;
Fréchette and de Vernal, 2009; D'Andrea et al., 2011; Axford et al., 2013].

We compare the timing of ice retreat at our study sites to the earliest available summer temperature estimates
from nearby lake sediment records to assess how warm temperatures might have been when ice retreat
occurred. These temperature reconstructions do not extend back to when ice retreated past its late Holocene
extent, but several complementary lines of evidence suggest that these records provide maximum estimates of
temperatures during early Holocene GIS retreat. Overall, data sets from the larger region that extend back into
the earliest Holocene suggest cooler temperatures in the region in the earliest Holocene, followed by warming
into the HTM, albeit with significant spatiotemporal variability [Kaufman et al., 2004; Marcott et al., 2013]. In
central Greenland, melt layers (summer temperature proxy) were essentially absent from the Greenland Ice
Sheet Project 2 (GISP2) ice core (72.6°N) before ~10 ka, increasing to a maximum at ~7 ka (Figure 3e) [Alley and
Anandakrishnan, 1995]. The Dye 3 (65.2°N) and Greenland Ice Core Project (GRIP) (72.6°N) borehole records from
Greenland show annual mean warming across the early Holocene to a HTM after ~8 ka (Figure 3f) [Dahl-Jensen
et al., 1998]. West, southwest, and southeast Greenland marine records document surface ocean warming
across the early Holocene to a HTM in the middle Holocene [Ren et al., 2009; Jennings et al., 2011, 2014].

In west Greenland at North Lake, the earliest reconstructed summer temperature is ~1.5°C warmer than the
preindustrial period at ~7.1 ka (from chironomid assemblages), followed by warming into a HTM by ~6 ka
(Figures 1 and 3a) [Axford et al., 2013] (all temperature anomalies are referenced to the late 1800 C.E. average
temperature). Amino acid ratios of marine bivalves in west Greenland also imply the onset of the HTM at ~6 ka
[Briner et al., 2014]. In southwest Greenland near Kangerlussuag, the earliest summer lake water temperatures
reconstructed at Braya So (from alkenones) ~6.1 ka were ~5°C warmer than those during the preindustrial
period [D'Andrea et al., 2011] (Figures 1 and 3b), during a time when paleolimnological evidence suggests
aridity in the same region [Perren et al,, 2012; Anderson and Leng, 2004] and when North Lake was also
registering relatively warm temperatures. In south Greenland, quantitative reconstructions from Qipisarqo Lake
extend to 8.6-8.7 ka and indicate that summer temperatures at that time were ~0.5°C (pollen assemblages)
to ~1.5°C (chironomid assemblages) warmer than preindustrial temperatures (Figures 1 and 3c) [Wooller et al.,
2004; Fréchette and de Vernal, 2009]. Beyond quantitative temperature inferences, complementary
paleoenvironmental inferences from lakes in south and southeast Greenland suggest general warming in
the first millennia of the Holocene and a HTM in the early Holocene [Kaplan et al., 2002; Andresen et al., 2004;
Massa et al., 2012; Balascio et al., 2013].

At all our study sites, GIS margins had retreated within their late Holocene maximum extents prior to the
earliest nearby quantitative summer temperature estimates (Figures 3a-3c). In south and west Greenland, it
nonetheless appears that the earliest summer temperature estimates from lakes provide maximum
constraints on the summer warmth that drove ice margin retreat, because peak HTM temperatures in south
and west Greenland seem to have occurred after local GIS margins were already within their late Holocene
limits. In contrast, '°Be ages from the southwest near Kangerlussuaq show ice retreating to a smaller than late
Holocene extent during or after peak HTM temperatures.

Instrumental records from Narsarsuaq in south Greenland document ~1°C of summer warming over the last
century [Hanna et al., 2009]. South Greenland temperatures of the past decade are now likely comparable to
or slightly warmer than the summer temperatures that probably drove early Holocene ice retreat within its
late Holocene maximum in south Greenland (Figure 3c). Accordingly, south Greenland ice margins are
presently retreating back from their late Holocene extents [van den Broeke et al., 2009; Kelley et al., 2012].
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