1,911 research outputs found

    Local Maximum Entropy Shape Functions Based FE-EFGM Coupling

    Get PDF
    In this paper, a new method for coupling the finite element method (FEM)and the element-free Galerkin method (EFGM) is proposed for linear elastic and geometrically nonlinear problems using local maximum entropy shape functions in theEFG zone of the problem domain. These shape functions possess a weak Kroneckerdelta property at the boundaries which provides a natural way to couple the EFGand the FE regions as compared to the use of moving least square basis functions.In this new approach, there is no need for interface/transition elements between theEFG and the FE regions or any other special treatment for shape function continuity across the FE-EFG interface. One- and two-dimensional linear elastic and two-dimensional geometrically nonlinear benchmark numerical examples are solved by the new approach to demonstrate the implementation and performance of the current approach

    A novel Multi-permittivity Cylindrical Dielectric Resonator Antenna for Wideband Applications

    Get PDF
    In this paper, a novel multi-permittivity cylindrical dielectric resonator antenna for wideband application is presented. The multi-permittivity cylinder is formed by combining two different permittivity material sectors in such a way that each sector (with constant permittivity) is 90 degree apart. A direct microstrip line coupling terminated with T-stub at the open end is used to excite the multi-permittivity cylindrical dielectric resonator. The angular position of the multi sector dielectric resonator with respect to the longitudinal axis of the microstrip line and length of the additional strip at the open end of the feeding circuit is key parameters for wideband operation of the antenna. By optimizing all parameters of the proposed antenna, wideband impedance bandwidth of 56% (12.1 GHz - 21.65 GHz) is achieved. The average gain of the antenna throughout the bandwidth is 5.9 dB with good radiation properties in both E-plane and H-plane. A well matched simulation and experimental results show that the antenna is suitable for wideband applications

    A19/B6: A new Lanczos-type algorithm and its implementation

    Get PDF
    Lanczos-type algorithms are mostly derived using recurrence relationships between formal orthogonal polynomials. Various recurrence relations between these polynomials can be used for this purpose. In this paper, we discuss recurrence relations A 19 and B 6 for the choice Ui ( x ) = P(1)i(x), where Ui is an auxiliary family of polynomials of exact degree i. This leads to new Lanczos-type algorithm A19=B6 that shows superior stability when compared to existing algorithms of the same type. This new algorithm is derived and described here. Computational results obtained with it are compared to those of the most robust algorithms of this type namely A12, A new 12 A5=B10 and A8=B10 on the same test problems. These results are included

    Enhancing Grid Operation with Electric Vehicle Integration in Automatic Generation Control

    Get PDF
    Wind energy has been recognized as a clean energy source with significant potential for reducing carbon emissions. However, its inherent variability poses substantial challenges for power system operators due to its unpredictable nature. As a result, there is an increased dependence on conventional generation sources to uphold the power system balance, resulting in elevated operational costs and an upsurge in carbon emissions. Hence, an urgent need exists for alternative solutions that can reduce the burden on traditional generating units and optimize the utilization of reserves from non-fossil fuel technologies. Meanwhile, vehicle-to-grid (V2G) technology integration has emerged as a remedial approach to rectify power capacity shortages during grid operations, enhancing stability and reliability. This research focuses on harnessing electric vehicle (EV) storage capacity to compensate for power deficiencies caused by forecasting errors in large-scale wind energy-based power systems. A real-time dynamic power dispatch strategy is developed for the automatic generation control (AGC) system to integrate EVs and utilize their reserves optimally to reduce reliance on conventional power plants and increase system security. The results obtained from this study emphasize the significant prospects associated with the fusion of EVs and traditional power plants, offering a highly effective solution for mitigating real-time power imbalances in large-scale wind energy-based power systems

    Z-TCAM: An SRAM-based Architecture for TCAM

    Get PDF
    published_or_final_versio

    Risk Factors of Diarrhoea in Malnourished Children Under Age of 5 Years

    Get PDF
    Background: Acute infectious enteritis remains one of the commonest causes of death among infants and children in developing countries. Acute enteritis is defined as a loss of stool consistency with pasty or liquid stools, and/or an increase in stool frequency to more than three stools in 24 hours with or without fever or vomiting. Human survival depends on the secretion and reabsorption of fluid and electrolytes in the intestinal tract. The objective of the study is to evaluate the risk factors of diarrhoea in children under age of 5 years. Methodology: It was an observational study. Study was completed in about six months. Non-probability purposive sampling technique was used. In this study, 270 samples were taken from Diarrheal ward of The Children Hospital Lahore, Pakistan. Results: In this study, out of 270 patients, 58.52% were males and 41.48% were females. 90.37% patients were vaccinated. 54.81% had weaning history. 91.85% patients had feeding history. 29.26% had blood in stool. 96.67% patients were dehydrated. 95.56% patients had loose watery diarrhoea. 62.96% patients used boiled water. 58.52% patients consumed less than half litre of water, 30.00% patients consumed 1 litre of water and 11.48% patients consumed > 1 litre of water. 49.18% patients had proper hygiene. 38.15% mothers of patients were well educated. 40.37% patients had model household condition. 57.41% patients lived in rural area and 42.59% patients lived in urban area. Conclusion: The variation in the level of diarrheal morbidity was well explained by maternal education, income, personal hygiene, refuse disposal system and the effect of health extension programme

    Three-dimensional nonlinear micro/meso-mechanical response of the fibre-reinforced polymer composites

    Get PDF
    A three-dimensional multi-scale computational homogenisation framework is developed for the prediction of nonlinear micro/meso-mechanical response of the fibre-reinforced polymer (FRP) composites. Two dominant damage mechanisms, i.e. matrix elasto-plastic response and fibre–matrix decohesion are considered and modelled using a non-associative pressure dependent paraboloidal yield criterion and cohesive interface elements respectively. A linear-elastic transversely isotropic material model is used to model yarns/fibres within the representative volume element (RVE). A unified approach is used to impose the RVE boundary conditions, which allows convenient switching between linear displacement, uniform traction and periodic boundary conditions. The computational model is implemented within the framework of the hierarchic finite element, which permits the use of arbitrary orders of approximation. Furthermore, the computational framework is designed to take advantage of distributed memory high-performance computing. The accuracy and performance of the computational framework are demonstrated with a variety of numerical examples, including unidirectional FRP composite, a composite comprising a multi-fibre and multi-layer RVE, with randomly generated fibres, and a single layered plain weave textile composite. Results are validated against the reference experimental/numerical results from the literature. The computational framework is also used to study the effect of matrix and fibre–matrix interfaces properties on the homogenised stress–strain responses

    Planning, operation, and design of market-based virtual power plant considering uncertainty

    Get PDF
    The power systems of today seem inseparable from clean energy sources such as wind turbines (WTs) and photovoltaics (PVs). However, due to their uncertain nature, operational challenges are expected when WT and PV energy is added to the electricity network. It is necessary to introduce new technologies to compensate for the intermittent nature of renewable energy sources (RESs). Therefore, rationally implementing a demand response (DR) program with energy storage systems (ESSs) in a virtual power plant (VPP) environment is recommended as a way forward to minimize the volatile nature of RESs and improve power system reliability. Our proposed approach aims to maximize social welfare (SW) (i.e., maximization of consumer benefits while minimizing energy costs). Our method assesses the impact of the DR program on SW maximization. Two scenarios are examined, one with and one without a DR program. Stochastic programming theory is used to address the optimization problem. The uncertain behavior of WTs, PVs, and load demand is modeled using a scenario-based approach. The correctness of the proposed approach is demonstrated on a 16-bus UK generic distribution system. Our results show that SW and active power dispatch capacity of WT, PV, and ESS are fairly increased using the proposed approach. View Full-Tex

    A Numerical Simulation for Darcy-Forchheimer Flow of Nanofluid by a Rotating Disk With Partial Slip Effects

    Get PDF
    This study examines Darcy-Forchheimer 3D nanoliquid flow caused by a rotating disk with heat generation/absorption. The impacts of Brownian motion and thermophoretic are considered. Velocity, concentration, and thermal slips at the surface of the rotating disk are considered. The change from the non-linear partial differential framework to the non-linear ordinary differential framework is accomplished by utilizing appropriate variables. A shooting technique is utilized to develop a numerical solution of the resulting framework. Graphs have been sketched to examine how the concentration and temperature fields are affected by several pertinent flow parameters. Skin friction and local Sherwood and Nusselt numbers are additionally plotted and analyzed. Furthermore, the concentration and temperature fields are enhanced for larger values of the thermophoresis parameter
    • 

    corecore