
Title Z-TCAM: An SRAM-based Architecture for TCAM

Author(s) Ullah, Z; Jaiswal, MK; Cheung, RCC

Citation IEEE Transactions on Very Large Scale Integration Systems,
2015, v. 23, p. 402-406

Issued Date 2015

URL http://hdl.handle.net/10722/214167

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38076309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

402 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2015

Z-TCAM: An SRAM-based Architecture for TCAM
Zahid Ullah, Manish K. Jaiswal, and Ray C. C. Cheung

Abstract— Ternary content addressable memories (TCAMs) perform
high-speed lookup operation but when compared with static random
access memories (SRAMs), TCAMs have certain limitations such as
low storage density, relatively slow access time, low scalability, complex
circuitry, and are very expensive. Thus, can we use the benefits of
SRAM by configuring it (with additional logic) to enable it to behave
like TCAM? This brief proposes a novel memory architecture, named
Z-TCAM, which emulates the TCAM functionality with SRAM. Z-TCAM
logically partitions the classical TCAM table along columns and rows
into hybrid TCAM subtables, which are then processed to map on their
corresponding memory blocks. Two example designs for Z-TCAM of
sizes 512 × 36 and 64 × 32 have been implemented on Xilinx Virtex-7
field-programmable gate array. The design of 64 × 32 Z-TCAM has also
been implemented using OSUcells library for 0.18 µm technology, which
confirms the physical and technical feasibility of Z-TCAM. Search latency
for each design is three clock cycles. The detailed implementation results
and power measurements for each design have been reported thoroughly.

Index Terms— Application-specific integrated circuit (ASIC),
field-programmable gate array (FPGA), memory architecture,
priority encoder, static random access memory (SRAM)-based
TCAM, ternary content addressable memory (TCAM).

I. INTRODUCTION

Ternary content addressable memory (TCAM) allows its memory
to be searched by contents rather than by an address and a memory
location among matches is sent to the output in a constant time.
A typical TCAM cell has two static random access memory (SRAM)
cells and a comparison circuitry and has the ability to store three
states − 0, 1, and x where x is a don’t care state. The x state is
always regarded as matched irrespective of the input bit. The constant
time search of TCAM makes it a suitable candidate in different
applications such as network routers, data compression, real-time
pattern matching in virus-detection, and image processing [1].

TCAM provides single clock lookup; however, it has several
disadvantages compared with SRAM. TCAM is not subjected to
the intense commercial competition found in the RAM market [2].
TCAM is less dense than SRAM. The comparator’s circuitry in
TCAM cell adds complexity to the TCAM architecture. The extra
logic and capacitive loading due to the massive parallelism lengthen
the access time of TCAM, which is 3.3 times longer than the SRAM
access time [3]. Inborn architectural barriers also limit the total chip
capacity of TCAM. Complex integration of memory and logic also
makes TCAM testing very time consuming [1].

Furthermore, the cost of TCAM is about 30 times more per bit
of storage than SRAM [4]. RAM is available in a wider variety of
sizes and flavors, is more generic and widely available, and enables
to avoid the heavy licensing and royalty costs charged by some
CAM vendors [5]. CAM devices have very limited pattern capacity

Manuscript received August 13, 2012; revised March 28, 2013, July 11,
2013, and January 13, 2014; accepted February 19, 2014. Date of publication
March 18, 2014; date of current version January 30, 2015. This work
was supported in part by the Research Grant Council of the Hong Kong
Special Administrative Region under Project CityU 123612 and in part by
the Croucher Startup Allowance.

The authors are with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong (e-mail: zullah2-c@my.cityu.edu.hk;
mkjaiswal2-c@my.cityu.edu.hk; r.cheung@cityu.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2309350

and also CAM technology does not evolve as fast as the
RAM technology [6].

Field-programmable gate array (FPGA) is used in many applica-
tions, for example, in networking systems [7] and [8] owing to several
reasons that include its reconfigure-ability, massive hardware paral-
lelism, and rapid prototyping capability. Recent FPGA devices such
as Xilinx Virtex-7 [9] provide high clock rate and a large amount of
on-chip dual-port memory with configurable word width. Currently,
TCAMs are used in networking systems but they are expensive and
not scalable with respect to clock rate or circuit area compared with
RAMs [10]. The throughput of classical TCAMs is also limited
by the relatively low speed of TCAMs [11]. Thus, SRAM- and
FPGA-based TCAMs can be used in applications such as in
networking chips to achieve high speed and high throughput.

With the potential advantages of SRAM over CAM, and feasibility
of FPGA technology, we propose a memory architecture called
Z-TCAM that emulates TCAM functionality with SRAM and has
been successfully implemented on Xilinx Virtex-7 FPGA and also
designed using OSUcells library for 0.18 µm technology. We assure
that the proposed TCAM offers comparable search performance,
scalability, and lower cost than classical TCAM devices, provided
that SRAM devices are denser, cheaper, and operate faster than
TCAM devices.

A. Related Work

We summarize RAM-based solutions for CAM in this section. The
methods proposed in [2] and [12] use hashing to build CAM from
RAM but these methods suffer from collisions and bucket overflow.
If many records have been placed in an overflow area, then a lookup
may not finish until many buckets are searched. In [12], when stored
keys contain don’t care bits in the bit positions used for hashing,
then such keys must be duplicated in multiple buckets, which need
increased capacity. On the other hand, if the search key contains don’t
care bits which are taken by the hash function, multiple buckets must
be accessed that results in performance degradation. In [2], the perfor-
mance of the method becomes gracefully degradable as the number
of stored elements increases. Furthermore, it emulates binary CAM,
not TCAM. Thus, hashing cannot provide deterministic performance
owing to potential collisions and is inefficient in handling wild-
card. Traditional algorithmic search solutions take multiple clock
cycles [11] and also result in inefficient memory utilization [10].
In contrast, Z-TCAM has a deterministic search performance that is
independent of data, efficiently handles the wild-cards, and has better
memory utilization.

The method proposed in [13] combines RAM and CAM to
develop the CAM functionality. This approach makes partitions of
the conventional TCAM table using some distinguishing bits in CAM
entries. But making partitions of totally random data is a very tedious
and time consuming job. Because the method uses TCAM as a part of
the overall architecture, it brings the intrinsic TCAM disadvantages
in the overall architecture of [13] but Z-TCAM is generic and has an
easy partitioning scheme.

RAM-based CAMs presented in [6] and [14] have an exponential
increase in memory size with the increase in number of bits in CAM
word, thus making them prohibitive. For instance, if a CAM word

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2015 403

TABLE I
TRADITIONAL TCAM TABLE AND ITS HYBRID PARTITIONS (HP)

TABLE II
Z-TCAM EXAMPLE: DATA MAPPING

has 36 bits, its size would be 236 = 64 GB in [6]. Furthermore,
the method in [14] only works on ascended data but in typical
CAM applications data are totally random. By arranging the data
in ascending order, the original order of entries is disturbed. So,
there must be a way to store the original addresses, which is lacked
by [14]. If original addresses are considered, the memory and power
requirements further increase. In contrast to [6] and [14], Z-TCAM
supports an arbitrarily large bit pattern, considers the storage of
original addresses, while using appropriate partitioning.

B. Paper Organization

The rest of this brief is organized as follows: Section II elaborates
hybrid partitioning. Section III discusses the architecture of Z-TCAM.
Section IV explains Z-TCAM operations with examples. Section V
provides implementation of Z-TCAM and Section VI concludes the
brief along with highlighting the future work.

II. HYBRID PARTITIONING OF TCAM TABLE

Hybrid partitioning (HP) is a collective name given to vertical parti-
tioning and horizontal partitioning of the conventional TCAM table.
An example of HP is given in Table I. HP partitions conventional
TCAM table vertically (columnwise) and horizontally (rowwise)
into TCAM subtables, which are then processed to be stored in
their corresponding memory units. This processing (data mapping)
has been explained in Section IV-A with an example (Table II) to
demonstrate the layer architecture of Z-TCAM. Vertical partitioning
(VP) implies that a TCAM word of C bits is partitioned into N
subwords; each subword is of w bits. VP is used in Z-TCAM to
decrease memory size as much as possible. Horizontal partitioning
(HrP) divides each vertical partition using the original address range
of conventional TCAM table into L horizontal partitions. HrP cannot
be used alone as it is area, power, and cost hungry but is used to
create layers. HP results in a total of L × N hybrid partitions.

The dimensions of each hybrid partition are K × w where K is
a subset from original addresses and w is the number of bits in a
subword. Hybrid partitions spanning the same addresses are in the
same layer. For example, HP21 and HP22 span the same address
range and are in layer 2.

III. ARCHITECTURE OF Z-TCAM

A. Overall Architecture

The overall architecture of Z-TCAM is depicted in Fig. 1 where
each layer represents the architecture shown in Fig. 2. It has L layers
and a CAM priority encoder (CPE). Each layer outputs a potential
match address (PMA). The PMAs are fed to CPE, which selects
match address (MA) among PMAs.

Fig. 1. Architecture of Z-TCAM. (sw: subword, C : # of bits in the input
word, PMA: potential match address, and MA: match address).

Fig. 2. Architecture of a layer of Z-TCAM. (sw: subword, VM: validation
memory, OATAM: original address table address memory, OAT: original
address table, and LPE: layer priority encoder).

B. Layer Architecture

Layer architecture is shown in Fig. 2. It contains N validation
memories (VMs), 1-bit AND operation, N original address table
address memories (OATAMs), N original address tables (OATs),
K -bit AND operation, and a layer priority encoder (LPE).

1) Validation Memory: Size of each VM is 2w × 1 bits where
w represents the number of bits in each subword and 2w shows
the number of rows. A subword of w bits implies that it has total
combinations of 2w where each combination represents a subword.
For example, if w is of 4 bits, then it means that there are total of
24 = 16 combinations. This explanation is also related to OATAM
and OAT. Each subword acts as an address to VM. If the memory
location be invoked by a subword is high, it means that the input
subword is present, otherwise absent. Thus, VM validates the input
subword, if it is present. For example, Table II shows that subwords
00, 01, and 11 are mapped in VM21. This states that memory
locations 00, 01, and 11 should be high in VM21 and the remain-
ing memory locations are set to low because their corresponding
subwords do not exist.

2) 1-Bit AND Operation: It ANDs the output of all VMs. The
output of 1-bit AND operation decides the continuation of a search
operation. If the result of 1-bit AND operation is high, then it permits

404 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2015

the continuation of a search operation, otherwise mismatch occurs in
the corresponding layer.

3) Original Address Table Address Memory: Each OATAM is of
2w × w bits where 2w is the number of rows and each row has
w bits. In OATAM, an address is stored at the memory location
indexed by a subword and that address is then used to invoke a
row from its corresponding OAT. If a subword in VM is mapped,
then a corresponding address is also stored in OATAM at a memory
location accessed by the subword. For example, Table II shows
OATAM21 where addresses are stored at the memory locations 00, 01,
and 11. The output of OATAM is called as OATA. Hyphen “-”
indicates that the corresponding memory location has no data because
the corresponding subword for the memory location is not present
in VM.

4) Original Address Table: Dimensions of OAT are 2w× K
where w is the number of bits in a subword, 2w represents number
of rows, and K is the number of bits in each row where each
bit represents an original address. Here K is a subset of original
addresses from conventional TCAM table. It is OAT, which considers
the storage of original addresses. An example of OAT is given in
Table II, where 1 shows the presence of a subword at an original
address.

5) K -Bit AND Operation: It ANDs bit-by-bit the read out K -bit
rows from all OATs and forwards the result to LPE.

6) Layer Priority Encoder: Because we emulate TCAM and
multiple matches may occur in TCAM [15], the LPE selects PMA
among the outputs of K -bit AND operation.

IV. Z-TCAM OPERATIONS

A. Data Mapping Operation

Classical TCAM table is logically partitioned into hybrid partitions.
Each hybrid partition is then expanded into a binary version. Thus,
we first expand x into states 0 and 1 to be stored in SRAM. For
example, if we have a TCAM word of 010x , then it is expanded into
0100 and 0101. Each subword, acting as an address, is applied to its
corresponding VM and a logic “1” is written at that memory location.
The same subword is also applied to its respective OATAM and w bits
data are written at that memory location. During search, these w bits
data act as an address to the OAT. The K bits data are also written at
the memory location in OAT determined by its corresponding OATA.
Thus, in this way, all hybrid partitions are mapped.

A subword in a hybrid partition can be present at multiple
locations. So, it is mapped in its corresponding VM and its original
address(es) is/are mapped to its/their corresponding bit(s) in its
respective OAT. Since a single bit in OAT represents an original
address, only those memory locations in VMs and address posi-
tions/original addresses in OATs are high, which are mapped while
remaining memory locations and address positions are set to low in
VMs and OATs, respectively.

Example of data mapping is shown in Table II. We use Table I
to be mapped to Z-TCAM. We take N = 2, L = 2, K = 2, and
w = 2. After necessary processing, HP11, HP12, HP21, and HP22
are mapped to their corresponding memory units. In the example,
we map hybrid partitions of layer 2 to their corresponding memory
units. Hybrid partitions of layer 1 can be easily mapped in similar
way.

B. Search Operation

1) Searching in a Layer of Z-TCAM: Algorithm 1 describes
searching in a layer of Z-TCAM. N subwords are concurrently
applied to a layer. The subwords then read out their corresponding
memory locations from their respective VMs.

Algorithm 1 Pseudocode for Searching in a Layer of Z-TCAM

TABLE III
EXAMPLE OF A SEARCH OPERATION IN LAYER 2 OF Z-TCAM

Algorithm 2 Pseudocode for Searching in Z-TCAM

If all VMs validate their corresponding subwords (equivalent to
1-bit AND operation in Fig. 2), then searching will continue, other-
wise mismatch occurs in the layer. Upon validation of all subwords,
the subwords read out their respective memory locations from their
corresponding OATAMs concurrently and output their corresponding
OATAs. All OATAs then read out K -bit rows from their correspond-
ing OATs simultaneously, which are then bitwise ANDed. LPE selects
PMA from the result of the K -bit AND operation. Example of a search
operation in layer 2 is shown in Table III, following Algorithm 1.
Memory blocks in Table II need to be searched.

2) Searching in Z-TCAM: Search operation in the proposed TCAM
occurs concurrently in all layers, which follows Algorithm 2. Search
key is applied to Z-TCAM, which is then divided into N subwords.
After searching, PMAs are available from all layers. CPE selects MA
among PMAs; otherwise a mismatch of the input word occurs.

Table IV provides overall search operation in Z-TCAM, which
follows Algorithm 2. We use input word 0011 to be searched.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2015 405

TABLE IV
EXAMPLE OF A SEARCH OPERATION IN Z-TCAM

TABLE V
IMPLEMENTATION RESULTS OF Z-TCAM ON VIRTEX-7 FPGA

In Table IV, for explanation, we assume that we have also mapped
layer 1.

V. Z-TCAM IMPLEMENTATION AND RESULTS

We have implemented two example designs with different design
parameters (L : # of layers and N : # of vertical partitions) of Z-TCAM
for sizes 512×36 and 64×32 using Verilog-HDL on Xilinx Virtex-7
(xc7v2000t-2flg1925) FPGA as the target using Xilinx 13.2 Synthesis
and Implementation Tool. We have verified its functionality using
different test vectors using Xilinx ISim Simulator. Implementation
flow exactly follows Fig. 1. Resource utilization and maximum
frequency of the example designs are given in Table V.

We have measured power consumption using Xilinx Xpower
Analyzer [16]. We have generated the switching activity interchange
format (SAIF) file, which is required for more accurate power
estimation. Total dynamic power consumption with 1.0 v core voltage
and 100 MHz operation for different cases of the design examples is
tabulated in Table V. We analyze from Table V that if we increase
value of L for the same value of N , then there is an increase in the
memory size and power consumption. Similarly, if we decrease value
of N for the same value of L , then there is also an increase in the
memory size and power consumption. Thus, a smaller value of w
reduces area and power consumption of Z-TCAM.

We have also synthesized and placed and routed 64 × 32
Z-TCAM using Synopsys tools using OSUcells library for 0.18 µm
technology [17], which confirm its physical and technical feasibility.
The design has been automatically placed and routed with Synopsys
Astro tool, and finally a graphic database system (GDS) file has
been created. The final layout and floorplan (preplacement) are
shown in Fig. 3. The floorplan (preplacement) is highlighted with
various memories used in layer 1. Details of the application-specific
integrated circuit (ASIC) implementation are shown in Table VI.
The cell/core ratio for final chip is 76.894%. The OSUcells library
does not have memory IPs, and memories are mainly constructed
using basic cells and Flip Flops. The current ASIC implementation
has been provided to show the physical realization of the proposed
methodology. The proposed design mostly consists of memory blocks
(RAM); using optimized SRAM standard cell memory intellectual
property (IP) the design metrics can be drastically improved in terms
of area, with possible further improvement in speed and power cost.

Latency of Z-TCAM up to PMA is three clock cycles, which is
higher than that of conventional CAM; however, several literatures,

Fig. 3. ASIC implementation for 64 × 32 of Z-TCAM, with L = 4, N = 4.
Layout (left) and (preplacement) floorplan (right).

TABLE VI
IMPLEMENTATION RESULTS FOR 64 × 32 Z-TCAM IN OSUCELLS

LIBRARY FOR 0.18 µm TECHNOLOGY

for example [12], [18], and [19], take multiple cycles for a lookup,
thus making CAM latency even longer. With the inclusion of priority
encoder, latency becomes four clock cycles. Latency can be easily
compromised as long as throughput is achieved. The throughput of
the proposed TCAM is one word comparison per clock cycle. For
larger TCAM size, there may be larger values for L and N but it is
expected that the throughput is not affected by larger size of TCAM.
Because all layers are accessed simultaneously, latency is independent
of number of layers. Key benefits of Z-TCAM over conventional
TCAM are given below.

1) The proposed Z-TCAM is simpler, and easily scalable (owing
to easy scalability of SRAM) for large size TCAM. The
proposed one can be easily composed in ASIC or FPGA envi-
ronment and the feasibility has been demonstrated successfully.

2) The proposed TCAM follows the development trends of
SRAM, which are much faster than conventional TCAM. Thus,
the development in FPGA and SRAM technologies will give
much better values for the proposed Z-TCAM.

3) Classical TCAM uses match-line and XOR gates for com-
parison operations. The match-lines in classical TCAM are
very capacitive and consume much time for charging and
discharging. There is the physical limit in increasing speed for
classical TCAM because of such intrinsic structure. However,
the proposed approach mainly uses SRAM read operations for
comparisons. The speed of the proposed TCAM is only limited
by the read speed of SRAMs. This speed can be much higher
than the speed of classical TCAM.

VI. CONCLUSION

In this brief, we have presented a novel SRAM-based TCAM
architecture of Z-TCAM. We have implemented two example designs
of 512 × 36 and 64 × 32 of Z-TCAM on Xilinx Virtex-7 FPGA.
We have also designed 64 × 32 Z-TCAM in OSUcells library for
0.18 µm technology, which confirms its technical feasibility. FPGA
implementation is a big plus for Z-TCAM. Resources utilization,
speed, and power consumption for different situations for the exam-
ple designs on FPGA as well as in ASIC have been tabulated.
Z-TCAM also ensures large capacity TCAM whereas this capability
is lacked by conventional ones. Moreover, the proposed TCAM has
a simpler structure, and very importantly, has a deterministic search
performance of one word comparison per clock cycle.

406 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2015

SRAM-based TCAM is a rich field of research and further inves-
tigation is necessary to find out more SRAM-based TCAMs. Our
future work aims to investigate the field in depth and achieve more
designs for SRAM-based TCAM.

REFERENCES

[1] N. Mohan, W. Fung, D. Wright, and M. Sachdev, “Design tech-
niques and test methodology for low-power TCAMs,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 6, pp. 573–586,
Jun. 2006.

[2] P. Mahoney, Y. Savaria, G. Bois, and P. Plante, “Parallel hashing
memories: An alternative to content addressable memories,” in Proc.
3rd Int. IEEE-NEWCAS Conf., Jun. 2005, pp. 223–226.

[3] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest prefix
matching using bloom filters,” IEEE/ACM Trans. Netw., vol. 14, no. 2,
pp. 397–409, Apr. 2006.

[4] D. E. Taylor, “Survey and taxonomy of packet classification
techniques,” ACM Comput. Surveys, New York, NY, USA:
Tech. Rep. WUCSE-2004-24, 2004.

[5] P. Mahoney, Y. Savaria, G. Bois, and P. Plante, “Transactions on high-
performance embedded architectures and compilers II,” in Performance
Characterization for the Implementation of Content Addressable Mem-
ories Based on Parallel Hashing Memories, P. Stenström, Ed. Berlin,
Germany: Springer-Verlag, 2009, pp. 307–325.

[6] S. V. Kartalopoulos, “RAM-based associative content-addressable mem-
ory device, method of operation thereof and ATM communica-
tion switching system employing the same,” U.S. Patent 6 097 724,
Aug. 1, 2000.

[7] W. Jiang and V. Prasanna, “Scalable packet classification on FPGA,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 9,
pp. 1668–1680, Sep. 2012.

[8] M. Becchi and P. Crowley, “Efficient regular expression evaluation: The-
ory to practice,” in Proc. 4th ACM/IEEE Symp. Archit. Netw. Commun.
Syst., Nov. 2008, pp. 50–59.

[9] Xilinx, San Jose, CA, USA. Xilinx FPGAs [Online]. Available:
http://www.xilinx.com

[10] W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet classifica-
tion on FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays, 2009, pp. 219–228.

[11] W. Jiang and V. Prasanna, “Parallel IP lookup using multiple SRAM-
based pipelines,” in Proc. IEEE Int. Symp. Parallel Distrib. Process.,
Apr. 2008, pp. 1–14.

[12] S. Cho, J. Martin, R. Xu, M. Hammoud, and R. Melhem, “CA-RAM:
A high-performance memory substrate for search-intensive applications,”
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., Apr. 2007,
pp. 230–241.

[13] M. Somasundaram, “Memory and power efficient mechanism for fast
table lookup,” U.S. Patent 20 060 253 648, Nov. 2, 2006.

[14] M. Somasundaram, “Circuits to generate a sequential index for an
input number in a pre-defined list of numbers,” U.S. Patent 7 155 563,
Dec. 26, 2006.

[15] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE J. Solid-
State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006.

[16] Xilinx, San Jose, CA, USA. Xilinx Xpower Analyzer [Online]. Available:
http://www.xilinx.com

[17] OSUCells, Stillwater, OK, USA [Online]. Available: http://vlsiarch.ecen.
okstate.edu

[18] S.-J. Ruan, C.-Y. Wu, and J.-Y. Hsieh, “Low power design of
precomputation-based content-addressable memory,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 16, no. 3, pp. 331–335, Mar. 2008.

[19] H. Noda et al., “A cost-efficient high-performance dynamic TCAM with
pipelined hierarchical searching and shift redundancy architecture,” IEEE
J. Solid-State Circuits, vol. 40, no. 1, pp. 245–253, Jan. 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

