A_{19} / B_{6} : A NEW LANCZOS-TYPE ALGORITHM AND ITS IMPLEMENTATION

ZAKIR ULLAH ${ }^{1}$, MUHAMMAD FAROOQ ${ }^{2}$ AND ABDELLAH SALHI ${ }^{3}$

Abstract

Lanczos-type algorithms are mostly derived using recurrence relationships between formal orthogonal polynomials. Various recurrence relations between these polynomials can be used for this purpose. In this paper, we discuss recurrence relations A_{19} and B_{6} for the choice $U_{i}(x)=P_{i}^{(1)}(x)$, where U_{i} is an auxiliary family of polynomials of exact degree i. This leads to new Lanczos-type algorithm A_{19} / B_{6} that shows superior stability when compared to existing algorithms of the same type. This new algorithm is derived and described here. Computational results obtained with it are compared to those of the most robust algorithms of this type namely $A_{12}, A_{12}^{\text {new }} A_{5} / B_{10}$ and A_{8} / B_{10} on the same test problems. These results are included.

Key words : Lanczos algorithm; Systems of Linear Equations; Formal Orthogonal Polynomials $A M S$ SUBJECT : Primary 65F10.

1. Introduction

In 1950, the Lanczos algorithm, [26, 13], has been introduced to calculate the eigenvalues of a matrix. However, it has later been adapted for the solution of systems of linear equations (SLEs) where it is now a well established solver. The Lanczos method is an iterative process which, in exact arithmetic, gives the exact solution in at most n number

[^0]of steps [27], where n is the dimension of the problem. Several Lanczostype algorithms have been designed and among them, the famous conjugate gradient algorithm of Hestenes and Stiefel [25], when the matrix is Hermitian and the bi-conjugate gradient algorithm of Fletcher [22], in the general case. In the last few decades, Lanczos-type algorithms have evolved and different variants have been derived, which can be found in $[2,3,5,7,10,11,12,9,14,23,24,28,29,30,31,34,35,17]$.

Lanczos-type algorithms are commonly derived using Formal Orthogonal Polynomials (FOP's), [5]. The connection between the Lanczos algorithm, [27] and orthogonal polynomials, [32] has been studied extensively in $[2,4,5,11,12,6,8,9,16]$.

In this paper we will briefly recall recurrence relation $A_{19}[17]$ for the choice of auxiliary polynomial $U_{i}(x)=x^{i}$, where x^{i} is a monic polynomial of degree i. Then we will derive expressions for the coefficients of this polynomial for a new choice of $U_{i}(x)=P_{i}^{(1)}(x)$ which was not considered before. We will also recall $B_{6}[1]$ for the same choice of $U_{i}(x)$. We use the new choice of A_{19} in combination of B_{6} to derive a new Lanczos-type algorithm A_{19} / B_{6}. This algorithm is then applied to some problems considered in [17, 1, 33], and its performance is compared with that of existing algorithms of the same type namely $A_{12}, A_{12}^{\text {new }} A_{5} / B_{10}$ and $A_{8} / B_{10},[2,17,33]$. The paper is organized as follows. In section 2 we will explain the basic Lanczos process. In section 3 we will discuss the notion of FOPs. Relations A_{19} and B_{6} are recalled in section 4. A conclusion is given in section 5 .
1.1. The Lanczos Process. Consider the following system of linear equations,

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{1}
\end{equation*}
$$

The basic Lanczos approach for solving SLEs (1), can be explained as follows.

Choose \mathbf{x}_{0} and \mathbf{y}, two arbitrary vectors in \mathbb{R}^{n}, such that $\mathbf{y} \neq 0$, then Lanczos process [27] consists in generating a sequence of vectors $\mathbf{x}_{k} \in \mathbb{R}^{n}$, such that

$$
\begin{equation*}
\left(\mathbf{x}_{k}-\mathbf{x}_{0}\right) \in F_{k}\left(A, \mathbf{r}_{0}\right)=\operatorname{span}\left(\mathbf{r}_{0}, A \mathbf{r}_{0}, \ldots, A^{k-1} \mathbf{r}_{0}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{r}_{k}=\left(\mathbf{b}-A \mathbf{x}_{k}\right) \perp E_{k}\left(A^{T}, \mathbf{y}\right)=\operatorname{span}\left(\mathbf{y}, A^{T} \mathbf{y}, \ldots,\left(A^{T}\right)^{k-1} \mathbf{y}\right) \tag{3}
\end{equation*}
$$

where A^{T} is the transpose of matrix A.

Equation (2) implies

$$
\begin{equation*}
\mathbf{x}_{k}-\mathbf{x}_{0}=-\beta_{1} \mathbf{r}_{0}-\beta_{2} A \mathbf{r}_{0}-\cdots-\beta_{k} A^{k-1} \mathbf{r}_{0} \tag{4}
\end{equation*}
$$

Multiplying both sides of (4) by A then adding and subtracting \mathbf{b} on the left hand side of (4) gives

$$
\begin{equation*}
\mathbf{r}_{k}=\mathbf{r}_{0}+\beta_{1} A \mathbf{r}_{0}+\beta_{2} A^{2} \mathbf{r}_{0}+\cdots+\beta_{k} A^{k} \mathbf{r}_{0} \tag{5}
\end{equation*}
$$

If we set

$$
\begin{equation*}
P_{k}(x)=1+\beta_{1} x+\ldots+\beta_{k} x^{k}, \tag{6}
\end{equation*}
$$

then we can write from (5)

$$
\begin{equation*}
\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0} \tag{7}
\end{equation*}
$$

The polynomials P_{k} are known as residual polynomials [5]. Another interpretation of the P_{k} can be found in [15]. From (3), the orthogonality condition implies
$\left(\left(A^{T}\right)^{i} \mathbf{y}, \mathbf{r}_{k}\right)=\left(\mathbf{y}, A^{i} \mathbf{r}_{k}\right)=\left(\mathbf{y}, A^{i} P_{k}(A) \mathbf{r}_{0}\right)=0$, for $i=0, \ldots, k-1$.
Thus, the coefficients $\beta_{1}, \ldots, \beta_{k}$ form a solution of the following system of linear equations

$$
\left\{\begin{array}{l}
\beta_{1}\left(\mathbf{y}, A \mathbf{r}_{0}\right)+\cdots+\beta_{k}\left(\mathbf{y}, A^{k} \mathbf{r}_{0}\right)=-\left(\mathbf{y}, \mathbf{r}_{0}\right) \tag{8}\\
\vdots \\
\beta_{1}\left(\left(A^{T}\right)^{k-1} \mathbf{y}, A \mathbf{r}_{0}\right)+\cdots+\beta_{k}\left(\left(A^{T}\right)^{k-1} \mathbf{y}, A^{k} \mathbf{r}_{0}\right)=-\left(\left(A^{T}\right)^{k-1} \mathbf{y}, \mathbf{r}_{0}\right) .
\end{array}\right.
$$

The scalar products involved in the above system is defined as with the first argument conjugated. If the determinant of the above system is not zero then its solution exists, and thus we can obtain \mathbf{x}_{k} and \mathbf{r}_{k} from (4) and (7) respectively. Obviously, in practice, solving the above system directly for increasing values of k is not viable; k is the order of the iterate in the solution process. Now we shall see how to solve the system (8) for increasing value of k, that is, if polynomials P_{k} can be computed recursively.
Now, let c_{i} be defined as

$$
c_{i}=\left(\left(A^{T}\right)^{i} \mathbf{y}, \mathbf{r}_{0}\right)=\left(\mathbf{y}, A^{i} \mathbf{r}_{0}\right), \text { for } i=1,2, \ldots,
$$

and the linear functional c on the space of polynomials be given by

$$
\begin{equation*}
c\left(x^{i}\right)=c_{i}, \text { for } i=0,1 \ldots, \tag{9}
\end{equation*}
$$

so the system (8) can be written as

$$
\begin{equation*}
c\left(x^{i} P_{k}(x)\right)=0, \text { for } i=0,1, \ldots, k-1 . \tag{10}
\end{equation*}
$$

These conditions show that P_{k} is a polynomial of degree at most k, corresponding to the linear functional c and normalized by the condition $P_{k}(0)=1$. Using normalization condition $P_{k}(0)=1$, equation (6) can be written as

$$
P_{k}(x)=1+x Q_{k-1}(x),
$$

where $Q_{k-1}=\beta_{1}+\beta_{2} x+\ldots+\beta_{k} x^{k-1}$. Replacing x by A and multiplying both sides by \mathbf{r}_{0} we get

$$
P_{k}(A) \mathbf{r}_{0}=\mathbf{r}_{0}+A Q_{k-1}(A) \mathbf{r}_{0}
$$

Now using (7) the above relation becomes

$$
\mathbf{r}_{k}=\mathbf{r}_{0}+A Q_{k-1}(A) \mathbf{r}_{0}
$$

which can also be written as

$$
\mathbf{b}-A \mathbf{x}_{k}=\mathbf{b}-A \mathbf{x}_{0}+A Q_{k-1}(A) \mathbf{r}_{0}
$$

Simplifying and multiplying by $-A^{-1}$ on both sides of the last relation, we get

$$
\mathbf{x}_{k}=\mathbf{x}_{0}-Q_{k-1}(A) \mathbf{r}_{0}
$$

which shows that \mathbf{x}_{k} can be computed from \mathbf{r}_{k} recursively without inverting A.
1.2. Formal Orthogonal Polynomials. The polynomial $P_{k}(x)$ discussed in the previous section is defined by the following formula [5, $6,11,9,12]$,

$$
P_{k}(x)=\frac{\left|\begin{array}{cccc}
1 & x & \cdots & x^{k} \tag{11}\\
c_{0} & c_{1} & \cdots & c_{k} \\
\vdots & \vdots & & \vdots \\
c_{k-1} & c_{k} & \cdots & c_{2 k-1}
\end{array}\right|}{H_{k}^{(1)}}
$$

where $H_{k}^{(1)}$ is called the Hankel determinant [5], which is the determinant of the system (8). This determinant has the following expression:

$$
H_{k}^{(1)}=\left|\begin{array}{cccc}
c_{1} & c_{2} & \cdots & c_{k} \\
c_{2} & c_{3} & \cdots & c_{k+1} \\
\vdots & \vdots & & \vdots \\
c_{k} & c_{k+1} & \cdots & c_{2 k-1}
\end{array}\right|
$$

Clearly, P_{k} exists if and only if $H_{k}^{(1)} \neq 0$. We assume in the following sections that for all $k, H_{k}^{(1)} \neq 0$. If for some $k, H_{k}^{(1)} \approx 0$, then P_{k} does not exist, and breakdown occurs in the solution process. This breakdown issue is discussed elsewhere, $[2,17,33]$.

Let us now define the family of orthogonal polynomials $P_{k}^{(1)}(x)$ corresponding to the linear functional $c^{(1)}$ where $c^{(1)}$ is define by

$$
c^{(1)}\left(x^{i}\right)=c\left(x^{i+1}\right)=c_{i+1}, \text { for } i=0,1, \ldots
$$

These polynomials are normalized by the condition that they are monic [$5,6,11]$ and are given by the following formula

$$
P_{k}^{(1)}(x)=\frac{\left|\begin{array}{ccc}
c_{1} & \cdots & c_{k+1} \tag{12}\\
\vdots & & \vdots \\
c_{k} & \cdots & c_{2 k} \\
1 & \cdots & x^{k}
\end{array}\right|}{H_{k}^{(1)}} .
$$

The necessary and sufficient condition for the existence and uniqueness of $P_{k}^{(1)}(x)$ is that the Hankel determinant, $[5,6,11]$, is different from zero, which is the same condition as for the existence of the polynomial $P_{k}(x)$.

2. Relations A_{19} and B_{6}

In the following we will recall relations $A_{19}[17,18]$ and $B_{6}[1,2]$ for the choice of auxiliary polynomial $U_{i}(x)=x^{i}$, where x^{i} is a monic polynomial of degree i. Then we will derive expressions for the coefficients of these polynomials for the choice of $U_{i}(x)=P_{i}^{(1)}(x)$ which was not considered before for relation A_{19}. We use the new choice of A_{19} in tandem with B_{6} to derive a new Lanczos-type algorithm which we call A_{19} / B_{6}.
2.1. Relation A_{19}. Consider the following recurrence relation investigated in [17]

$$
\begin{equation*}
P_{k}(x)=\left(A_{k} x^{2}+B_{k} x+C_{k}\right) P_{k-2}^{(1)}(x)+\left(D_{k} x+E_{k}\right) P_{k-1}(x), \tag{13}
\end{equation*}
$$

where $P_{k}, P_{k-2}^{(1)}$ and P_{k-1} are polynomials of degree $k, k-2$ and $k-1$ respectively and $A_{k}, B_{k}, C_{k}, D_{k}$ and E_{k} are constants to be determined using the normalization condition $\forall k, P_{k}(0)=1$ and orthogonality conditions $\left(C_{1}\right)$ and $\left(C_{2}\right)$ given below
$\forall i=0,1 \cdots k-1, c\left(U_{i} P_{k}\right)=0 \longrightarrow\left(C_{1}\right)$.
$\forall i=0,1, \cdots k-1, c^{(1)}\left(U_{i} P_{k}^{(1)}\right)=0 \longrightarrow\left(C_{2}\right)$.
Using the normalization condition, equation (13) gives

$$
\begin{equation*}
1=E_{k}+C_{k} P_{k-2}^{(1)}(0) . \tag{14}
\end{equation*}
$$

Multiplying (13) by U_{i}, a polynomial of exact degree i and applying ' c ' on both sides we get

$$
\begin{align*}
c\left(U_{i} P_{k}\right)=A_{k} c\left(x^{2} U_{i} P_{k-2}^{(1)}\right) & +B_{k} c\left(x U_{i} P_{k-2}^{(1)}\right)+C_{k} c\left(U_{i} P_{k-2}^{(1)}\right) \tag{15}\\
& +D_{k} c\left(x U_{i} P_{k-1}\right)+E_{k} c\left(U_{i} P_{k-1}\right)
\end{align*}
$$

Similarly, using $\left(C_{1}\right)$, equation (15) becomes

$$
\begin{array}{r}
A_{k} c\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+B_{k} c\left(x U_{i} P_{k-2}^{(1)}\right)+C_{k} c\left(U_{i} P_{k-2}^{(1)}\right) \tag{16}\\
+D_{k} c\left(x U_{i} P_{k-1}\right)+E_{k} c\left(U_{i} P_{k-1}\right)=0 .
\end{array}
$$

For $i=0$, equation (16) becomes $C_{k} c\left(U_{0} P_{k-2}^{(1)}\right)=0$. Since $c\left(U_{0} P_{k-2}^{(1)}\right) \neq 0$, therefore, $C_{k}=0$. Hence from (14), we get $E_{k}=1$. The orthogonality condition $\left(C_{1}\right)$ is true for $\forall i=1,2,3, \cdots, k-4$. For $i=k-3$, equation (16) becomes $A_{k} c\left(x^{2} U_{k-3} P_{k-2}^{(1)}\right)=0$. This implies that $A_{k}=0$ as $c\left(x^{2} U_{k-3} P_{k-2}^{(1)}\right) \neq 0$. For $i=k-2$, equation (16) gives

$$
\begin{equation*}
B_{k} c^{(1)}\left(U_{k-2} P_{k-2}^{(1)}\right)+D_{k} c\left(x U_{k-2} P_{k-1}\right)=0 . \tag{17}
\end{equation*}
$$

For $i=k-1$, equation (16) gives

$$
\begin{equation*}
B_{k} c^{(1)}\left(U_{k-1} P_{k-2}^{(1)}\right)+D_{k} c\left(x U_{k-1} P_{k-1}\right)=-c\left(U_{k-1} P_{k-1}\right) \tag{18}
\end{equation*}
$$

If we set $a_{11}=c^{(1)}\left(U_{k-2} P_{k-2}^{(1)}\right), a_{12}=c\left(x U_{k-2} P_{k-1}\right), a_{21}=c^{(1)}\left(U_{k-1} P_{k-2}^{(1)}\right)$, $a_{22}=c\left(x U_{k-1} P_{k-1}\right), b_{1}=0$, and $b_{2}=-c\left(U_{k-1} P_{k-1}\right)$ then equations (17) and (18) can be written as

$$
\begin{array}{r}
a_{11} B_{k}+a_{12} D_{k}=0, \\
a_{21} B_{k}+a_{22} D_{k}=b_{2}, \tag{20}
\end{array}
$$

respectively. If Δ_{k} is the determinant of the coefficient matrix of the above system then, $\Delta_{k}=a_{11} a_{22}-a_{21} a_{12}$. If $\Delta_{k} \neq 0$ then $\quad B_{k}=-\frac{b_{2} a_{12}}{\Delta_{k}}$, $D_{k}=\frac{a_{11} b_{2}}{\Delta_{k}}$. Hence,

$$
\begin{equation*}
P_{k}(x)=B_{k} x P_{k-2}^{(1)}(x)+\left(D_{k} x+1\right) P_{k-1}(x) \tag{21}
\end{equation*}
$$

Let us apply the recursive formula (21) for computing polynomials P_{k} in order to find residuals \mathbf{r}_{k} and the corresponding vector \mathbf{x}_{k}. For this
replace x by A and multiply both sides by \mathbf{r}_{0}. Using $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$ and $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$, we get

$$
\begin{equation*}
\mathbf{r}_{k}=B_{k} A \mathbf{z}_{k-2}+D_{k} A \mathbf{r}_{k-1}+\mathbf{r}_{k-1} \tag{22}
\end{equation*}
$$

Since $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, (22) becomes

$$
\mathbf{b}-A \mathbf{x}_{k}=B_{k} A \mathbf{z}_{k-2}+D_{k} A \mathbf{r}_{k-1}+\mathbf{b}-A \mathbf{x}_{k-1} .
$$

Multiplying this latter equation by A^{-1} on both sides results in

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{x}_{k-1}-B_{k} \mathbf{z}_{k-2}-D_{k} \mathbf{r}_{k-1}, \tag{23}
\end{equation*}
$$

where coefficients B_{k} and D_{k} can be identified as $B_{k}=-\frac{b_{2} a_{12}}{\Delta_{k}}, D_{k}=\frac{a_{11} b_{2}}{\Delta_{k}}$, respectively. So, now we choose the polynomial $U_{i}(x)$.
2.1.1. Case-I: When $U_{i}(x)=x^{i}$. In the previous section we discussed A_{19} for general auxiliary polynomial U_{i}. Here we recall from [17] briefly the same relation A_{19} by taking $U_{i}=x^{i}$. In [17] we have $\Delta_{k}=a_{11} a_{22}-a_{21} a_{12}$, where $a_{11}=c^{(1)}\left(x^{k-2} P_{k-2}^{(1)}\right), a_{12}=c\left(x^{k-1} P_{k-1}\right), a_{21}=c^{(1)}\left(x^{k-1} P_{k-2}^{(1)}\right)$, $a_{22}=c\left(x^{k} P_{k-1}\right), b_{1}=0$, and $b_{2}=-c\left(x^{k-1} P_{k-1}\right)$. If $\Delta_{k} \neq 0$ then coefficients B_{k} and D_{k} appearing in (21) are as above. Since we know that

$$
\left\{\begin{array}{l}
c\left(x^{k} P_{k}\right)=\left(\left(A^{T}\right)^{k} \mathbf{y}, P_{k}(A) \mathbf{r}_{0}\right)=\left(\mathbf{y}_{k}, \mathbf{r}_{k}\right) \text { and } \tag{24}\\
c\left(x^{k} P_{k}^{(1)}\right)=\left(\left(A^{T}\right)^{k} \mathbf{y}, P_{k}^{(1)}(A) \mathbf{r}_{0}\right)=\left(\mathbf{y}_{k}, \mathbf{z}_{k}\right), \\
\text { with } \mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}
\end{array}\right.
$$

using (24), we can write $a_{11}=c^{(1)}\left(x^{k-2} P_{k-2}^{(1)}\right)=\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-2}\right)$,
$a_{12}=c\left(x^{k-1} P_{k-1}\right)=\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-1}\right), a_{21}=c^{(1)}\left(x^{k-1} P_{k-2}^{(1)}\right)=\left(\mathbf{y}_{k}, \mathbf{z}_{k-2}\right)$, $a_{22}=c\left(x^{k} P_{k-1}\right)=\left(\mathbf{y}_{k}, \mathbf{r}_{k-1}\right), b_{1}=0$, and $b_{2}=-c\left(x^{k-1} P_{k-1}\right)=$ $-\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-1}\right)$.

Now, since all of the above relations are only valid for $k \geq 3$, to evaluate (22) and (23) recursively, we need to evaluate $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{z}_{1}$ and \mathbf{z}_{2}, which are necessary, differently. These values are determined in detail in $[1,17]$. They are recalled briefly here, however, for completeness, as follows.
$\mathbf{r}_{1}=\mathbf{r}_{0}-\left(\frac{c_{0}}{c_{1}}\right) A \mathbf{r}_{0}, \mathbf{x}_{1}=\mathbf{x}_{0}+\left(\frac{c_{0}}{c_{1}}\right) \mathbf{r}_{0}$ where $c_{i}=\left(\mathbf{y}, A^{i} \mathbf{r}_{0}\right)$,
$\mathbf{r}_{2}=\mathbf{r}_{0}-\alpha A \mathbf{r}_{0}+\beta A^{2} \mathbf{r}_{0}, \mathbf{x}_{2}=\mathbf{x}_{0}+\alpha \mathbf{r}_{0}-\beta A \mathbf{r}_{0}$,
$\mathbf{z}_{1}=A \mathbf{r}_{0}-\left(\frac{c_{2}}{c_{1}}\right) \mathbf{r}_{0}, \mathbf{z}_{2}=A^{2} \mathbf{r}_{0}-\alpha_{1} A \mathbf{r}_{0}+\beta_{1} \mathbf{r}_{0}$.
Also $\tilde{\mathbf{z}_{1}}=A \tilde{\mathbf{z}_{0}}-\left(\frac{c_{2}}{c_{1}}\right) \tilde{\mathbf{z}_{0}}, \tilde{\mathbf{z}_{2}}=A^{2} \tilde{\mathbf{z}_{0}}-\alpha_{1} A \tilde{\mathbf{z}_{0}}+\beta_{1} \tilde{\mathbf{z}_{0}}$,
where $\delta=c_{1} c_{3}-c_{2}^{2}, \alpha=\frac{c_{0} c_{3}-c_{1} c_{2}}{\delta_{2}}, \beta=\frac{c_{0} c_{2}-c_{1}^{2}}{\delta}, \delta_{1}=c_{1} c_{3}-c_{2}^{2}$, $\alpha_{1}=\frac{c_{1} c_{4}-c_{2} c_{3}}{\delta_{1}}$, and $\beta_{1}=\frac{c_{2} c_{4}-c_{3}^{2}}{\delta_{1}}$.
2.1.2. Case-II: When $U_{i}(x)=P_{i}^{(1)}(x)$. In this section, we derive A_{19} for a different choice of $U_{i}(x)$ which was not considered before. All the coefficients involved in A_{19} have completely different expressions for this new choice of $U_{i}(x)$ as explained below. For $U_{i}(x)=P_{i}^{(1)}(x)$ all of the above expressions will have the following form:
$a_{11}=c^{(1)}\left(P_{k-2}^{(1)} P_{k-2}^{(1)}\right), a_{12}=c\left(x P_{k-2}^{(1)} P_{k-1}\right), a_{21}=c^{(1)}\left(P_{k-1}^{(1)} P_{k-2}^{(1)}\right)$, $a_{22}=c\left(x P_{k-1}^{(1)} P_{k-1}\right), b_{1}=0$, and $b_{2}=-c\left(P_{k-1}^{(1)} P_{k-1}\right)$. Using

$$
\left\{\begin{array}{l}
c^{(1)}\left(P_{k-1}^{(1)} P_{k-2}^{(1)}\right)=0, \tag{25}\\
\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}, \tilde{\mathbf{z}}_{k}=P_{k}^{(1)}\left(A^{T}\right) \tilde{\mathbf{z}}_{0}, \mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}, \text { and } \\
c\left(U_{k} P_{k}\right)=\left(y, U_{k}(A) P_{k}(A) r_{0}\right)=\left(U_{k}\left(A^{T}\right) y, P_{k}(A) r_{0}\right)=\left(\tilde{z}_{k}, r_{k}\right) \\
{\left[\text { note } \tilde{\mathbf{z}}_{0}=y\right],}
\end{array}\right.
$$

we get $a_{21}=0, a_{11}=c^{(1)}\left(P_{k-2}^{(1)} P_{k-2}^{(1)}\right)=\left(\tilde{\mathbf{z}}_{k-2}, A \mathbf{z}_{k-2}\right), a_{12}=c\left(x P_{k-2}^{(1)} P_{k-1}\right)$ $=\left(\tilde{\mathbf{z}}_{k-2}, A \mathbf{r}_{k-1}\right), a_{22}=c\left(x P_{k-1}^{(1)} P_{k-1}\right)=\left(\tilde{\mathbf{z}}_{k-1}, A \mathbf{r}_{k-1}\right), b_{1}=0, b_{2}=$ $-c\left(P_{k-1}^{(1)} P_{k-1}\right)=-\left(\tilde{\mathbf{z}}_{k-1}, \mathbf{r}_{k-1}\right), \Delta_{k}=a_{11} a_{22}, B_{k}=-\frac{b_{2} a_{12}}{\Delta_{k}}$, and $D_{k}=\frac{b_{2}}{a_{22}}$. Hence, after evaluating the coefficients $A_{k}, B_{k}, C_{k}, \Delta_{k}$ and E_{k} for the choice $U_{i}(x)=P_{i}^{(1)}(x)$ equation(13) reduces to

$$
\begin{equation*}
P_{k}(x)=B_{k} x P_{k-2}^{(1)}(x)+\left(D_{k} x+1\right) P_{k-1}(x) . \tag{26}
\end{equation*}
$$

Replacing x by A and multiplying both sides by \mathbf{r}_{0} and using $\mathbf{r}_{k}=$ $P_{k}(A) \mathbf{r}_{0}$, and $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$ we get

$$
\begin{equation*}
\mathbf{r}_{k}=B_{k} A \mathbf{z}_{k-2}+D_{k} A \mathbf{r}_{k-1}+\mathbf{r}_{k-1} \tag{27}
\end{equation*}
$$

Since $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, (14) becomes

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{x}_{k-1}-B_{k} \mathbf{z}_{k-2}-D_{k} \mathbf{r}_{k-1} \tag{28}
\end{equation*}
$$

2.2. Relation B_{6}. Consider the following recurrence relation investigated in [1]

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(A_{k} x^{2}+B_{k} x+C_{k}\right) P_{k-2}^{(1)}(x)+\left(D_{k} x+E_{k}\right) P_{k-1}^{(1)}(x), \tag{29}
\end{equation*}
$$

where $P_{k}^{(1)}, P_{k-2}^{(1)}$ and $P_{k-1}^{(1)}$ are polynomials of degree $k, k-2$ and $k-1$ respectively and $A_{k}, B_{k}, C_{k}, D_{k}$ and E_{k} are constants to be determined as already discussed in $[1,2]$ for the choices $x^{i}, P_{k}(x), P_{k}^{(1)}(x)$. We discuss
and recall B_{6} for general auxiliary polynomial U_{i}, a polynomial of exact degree i. Multiply (29) by U_{i} and apply $c^{(1)}$ on both sides to get

$$
\begin{gather*}
c^{(1)}\left(U_{i} P_{k}^{(1)}\right)=A_{k} c^{(1)}\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+B_{k} c^{(1)}\left(x U_{i} P_{k-2}^{(1)}\right) \\
+C_{k} c^{(1)}\left(U_{i} P_{k-2}^{(1)}\right)+D_{k} c^{(1)}\left(x U_{i} P_{k-1}^{(1)}\right)+E_{k} c^{(1)}\left(U_{i} P_{k-1}^{(1)}\right) . \tag{30}
\end{gather*}
$$

Using $\left(C_{2}\right)$ we get

$$
\begin{array}{r}
A_{k} c^{(1)}\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+B_{k} c^{(1)}\left(x U_{i} P_{k-2}^{(1)}\right)+C_{k} c^{(1)}\left(U_{i} P_{k-2}^{(1)}\right) \tag{31}\\
+D_{k} c^{(1)}\left(x U_{i} P_{k-1}^{(1)}\right)+E_{k} c^{(1)}\left(U_{i} P_{k-1}^{(1)}\right)=0 .
\end{array}
$$

The orthogonality condition $\left(C_{2}\right)$ is true for $\forall i=0,1,2, \cdots k-5$.
For $i=k-4$, we get $A_{k} c^{(1)}\left(x^{2} U_{k-4} P_{k-2}^{(1)}\right)=0$, which implies that
$A_{k}=0$ as $c^{(1)}\left(x^{2} U_{k-4} P_{k-2}^{(1)}\right) \neq 0$. But $P_{k}^{(1)}$ is a monic polynomial of degree k; so $D_{k}=1$. For $i=k-3$, we get $B_{k} c^{(1)}\left(x U_{k-3} P_{k-2}^{(1)}\right)=0$. Since $c^{(1)}\left(x U_{k-3} P_{k-2}^{(1)}\right) \neq 0, B_{k}=0$.
For $i=k-2$, we have $c^{(1)}\left(x U_{k-2} P_{k-1}^{(1)}\right)+C_{k} c^{(1)}\left(U_{k-2} P_{k-2}^{(1)}\right)=0$ which implies that

$$
\begin{equation*}
C_{k}=-\frac{c^{(1)}\left(x U_{k-2} P_{k-1}^{(1)}\right)}{c^{(1)}\left(U_{k-2} P_{k-2}^{(1)}\right)} \tag{32}
\end{equation*}
$$

For $i=k-1$, we get

$$
c^{(1)}\left(x U_{k-1} P_{k-1}^{(1)}\right)+C_{k} c^{(1)}\left(U_{k-1} P_{k-2}^{(1)}\right)+E_{k} c^{(1)}\left(U_{k-1} P_{k-1}^{(1)}\right)=0 .
$$

Since $c^{(1)}\left(U_{k-1} P_{k-1}^{(1)}\right) \neq 0$,

$$
\begin{equation*}
E_{k}=\frac{-c^{(1)}\left(x U_{k-1} P_{k-1}^{(1)}\right)-C_{k} c^{(1)}\left(U_{k-1} P_{k-2}^{(1)}\right)}{c^{(1)}\left(U_{k-1} P_{k-1}^{(1)}\right)} . \tag{33}
\end{equation*}
$$

Hence (29) becomes

$$
P_{k}^{(1)}(x)=C_{k} P_{k-2}^{(1)}(x)+\left(x+E_{k}\right) P_{k-1}^{(1)}(x),
$$

where

$$
C_{k}=-\frac{c^{(1)}\left(x U_{k-2} P_{k-1}^{(1)}\right)}{c^{(1)}\left(U_{k-2} P_{k-2}^{(1)}\right)},
$$

and

$$
E_{k}=\frac{-c^{(1)}\left(x U_{k-1} P_{k-1}^{(1)}\right)-C_{k} c^{(1)}\left(U_{k-1} P_{k-2}^{(1)}\right)}{c^{(1)}\left(U_{k-1} P_{k-1}^{(1)}\right)} .
$$

2.2.1. Relation B_{6} when $U_{i}(x)=P_{i}^{(1)}(x)$. In this case, (32) and (33) become $C_{k}=-\frac{c\left(x^{2} P_{k-2}^{(1)} P_{k-1}^{(1)}\right)}{c\left(x P_{k-2}^{(1)} P_{k-2}^{(1)}\right)}$, and
$E_{k}=\frac{-c^{(1)}\left(x P_{k-1}^{(1)} P_{k-1}^{(1)}\right)-C_{k} c^{(1)}\left(P_{k-1}^{(1)} P_{k-2}^{(1)}\right)}{c^{(1)}\left(P_{k-1}^{(1)} P_{k-1}^{(1)}\right)}$, respectively. Using

$$
\left\{\begin{array}{l}
c^{(1)}\left(P_{k-1}^{(1)} P_{k-2}^{(1)}\right)=0, \tag{34}\\
\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}, \tilde{\mathbf{z}}_{k}=P_{k}^{(1)}\left(A^{T}\right) \tilde{\mathbf{z}}_{0}, \mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}, \text { and } \\
c\left(U_{k} P_{k}\right)=\left(y, U_{k}(A) P_{k}(A) r_{0}\right)=\left(U_{k}\left(A^{T}\right) y, P_{k}(A) r_{0}\right)=\left(\tilde{z}_{k}, r_{k}\right), \\
{\left[\text { note } \tilde{\mathbf{z}}_{0}=y\right],}
\end{array}\right.
$$

we get $C_{k}=-\frac{c\left(x^{2} P_{k-2}^{(1)} P_{k-1}^{(1)}\right)}{c\left(x P_{k-2}^{(1)} P_{k-2}^{(1)}\right)}=-\frac{\left(\tilde{\mathbf{z}}_{k-2}, A^{2} \mathbf{z}_{k-1}\right)}{\left(\tilde{\mathbf{z}}_{k-2}, A \mathbf{z}_{k-2}\right)}$, and
$E_{k}=-\frac{c\left(x^{2} P_{k-1}^{(1)} P_{k-1}^{(1)}\right)}{c\left(x P_{k-1}^{(1)} P_{k-1}^{(1)}\right)}=-\frac{\left(\tilde{\mathbf{z}}_{k-1}, A^{2} \mathbf{z}_{k-1}\right)}{\left(\tilde{\mathbf{z}}_{k-1}, A \mathbf{z}_{k-1}\right)}$.
Hence after evaluating the coefficients $A_{k}, B_{k}, C_{k}, D_{k}$ and E_{k} for the choice $U_{i}(x)=P_{i}^{(1)}(x)$ equation (29) reduces to

$$
\begin{equation*}
P_{k}^{(1)}(x)=C_{k} P_{k-2}^{(1)}(x)+\left(x+E_{k}\right) P_{k-1}^{(1)}(x) . \tag{35}
\end{equation*}
$$

Replacing x by A, multiplying by \mathbf{r}_{0} and using $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$ we get

$$
\mathbf{z}_{k}=C_{k} \mathbf{z}_{k-2}+A \mathbf{z}_{k-1}+E_{k} \mathbf{z}_{k-1} .
$$

Replacing x by A^{T} and multiply by $\tilde{\mathbf{z}}_{0}=\mathbf{y}$ and using $\tilde{\mathbf{z}}_{k}=P_{k}^{(1)}\left(A^{T}\right) \tilde{\mathbf{z}}_{0}$, we get

$$
\tilde{\mathbf{z}}_{k}=C_{k} \tilde{\mathbf{z}}_{k-2}+A^{T} \tilde{\mathbf{z}}_{k-1}+E_{k} \tilde{\mathbf{z}}_{k-1} .
$$

2.3. Algorithm A_{19} / B_{6}. We now consider the combination of A_{19} and B_{6} for the choice $U_{i}(x)=P_{i}^{(1)}(x)$ which, as said earlier, was never considered before. The new algorithm is called A_{19} / B_{6} and its pseudo-code is given below as Algorithm 1.

```
Algorithm 1 Lanczos-type Algorithm \(A_{19} / B_{6}\).
    1: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\) such that \(\mathbf{y} \neq 0\).
    2: Set \(\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0}, \tilde{\mathbf{z}}_{0}=\mathbf{y}\),
    3: \(\mathbf{z}_{0}=\mathbf{r}_{0}\).
    4: \(\mathbf{p}=A \mathbf{r}_{0}, \mathbf{p}_{1}=A \mathbf{p}, \mathbf{p}_{2}=A \mathbf{p}_{1}, \mathbf{p}_{3}=A \mathbf{p}_{2}\),
    \(5: c_{0}=\left(\mathbf{y}, \mathbf{r}_{0}\right), c_{1}=(\mathbf{y}, \mathbf{p}), c_{2}=\left(\mathbf{y}, \mathbf{p}_{1}\right)\),
    \(6: c_{3}=\left(\mathbf{y}, \mathbf{p}_{2}\right), c_{4}=\left(\mathbf{y}, \mathbf{p}_{3}\right), \delta=c_{1} c_{3}-c_{2}^{2}\),
    7: \(\alpha=\frac{c_{0} c_{3}-c_{1} c_{2}}{\delta}, \beta=\frac{c_{0} c_{2}-c_{1}^{2}}{\delta}, \delta_{1}=c_{1} c_{3}-c_{2}^{2}\),
    8: \(\alpha_{1}=\frac{c_{1} c_{4}-c_{2} c_{3}}{\delta_{1}}, \beta_{1}=\frac{c_{2} c_{4}-c_{3}^{2}}{\delta_{1}}\),
    9: \(\mathbf{r}_{1}=\mathbf{r}_{0}-\left(\frac{c_{0}}{c_{1}}\right) \mathbf{p}, \mathbf{x}_{1}=\mathbf{x}_{0}+\left(\frac{c_{0}}{c_{1}}\right) \mathbf{r}_{0}\),
10: \(\mathbf{r}_{2}=\mathbf{r}_{0}-\alpha \mathbf{p}+\beta \mathbf{p}_{1}\),
11: \(\mathbf{x}_{2}=\mathbf{x}_{0}+\alpha \mathbf{r}_{0}-\beta \mathbf{p}\),
12: \(\mathbf{z}_{1}=\mathbf{p}-\left(\frac{c_{2}}{c_{1}}\right) \mathbf{r}_{0}, \mathbf{z}_{2}=\mathbf{p}_{1}-\alpha_{1} \mathbf{p}+\beta_{1} \mathbf{r}_{0}\),
13: \(\mathbf{y}_{1}=A^{T} \mathbf{y}, \mathbf{y}_{2}=A^{T} \mathbf{y}_{1}\),
14: \(\tilde{\mathbf{z}}_{1}=\mathbf{y}_{1}-\left(\frac{c_{2}}{c_{1}}\right) \tilde{\mathbf{z}}_{0}\),
15: \(\tilde{\mathbf{z}}_{2}=\mathbf{y}_{2}-\alpha_{1} \mathbf{y}_{1}+\beta_{1} \tilde{\mathbf{z}}_{0}\),
16: for \(\mathrm{k}=3,4, \ldots\) do
17: \(q_{1}=A r_{k-1}, q_{2}=A z_{k-1}, q_{3}=A q_{2}, q_{4}=A z_{k-2}, s=A^{T} \tilde{\mathbf{z}}_{k-1}\)
18: \(a_{11}=c^{(1)}\left(P_{k-2}^{(1)} P_{k-2}^{(1)}\right)=\left(\tilde{\mathbf{z}}_{k-2}, q_{4}\right)\)
19: \(a_{12}=c\left(x P_{k-2}^{(1)} P_{k-1}\right)=\left(\tilde{\mathbf{z}}_{k-2}, q_{1}\right)\)
20: \(a_{22}=c\left(x P_{k-1}^{(1)} P_{k-1}\right)=\left(\tilde{\mathbf{z}}_{k-1}, q_{1}\right)\)
21: \(b_{2}=-c\left(P_{k-1}^{(1)} P_{k-1}\right)=-\left(\tilde{\mathbf{z}}_{k-1}, \mathbf{r}_{k-1}\right)\)
22: \(\Delta_{k}=a_{11} a_{22}\),
23: if \(\Delta_{k} \leq \epsilon\)
24: print "ghost-type breakdown"
25: stop.
26: end if
27: \(B_{k}=-\frac{b_{2} a_{12}}{\Delta_{k}}, D_{k}=\frac{b_{2}}{a_{22}}\)
28: \(\mathbf{r}_{k}=B_{k} q_{4}+D_{k} q_{1}+\mathbf{r}_{k-1}\)
29: \(\mathbf{x}_{k}=\mathbf{x}_{k-1}-B_{k} \mathbf{z}_{k-2}-D_{k} \mathbf{r}_{k-1}\)
30: if \(\left\|\mathbf{r}_{k}\right\|>\epsilon\) then
31: \(C_{k}=-\frac{c\left(x^{2} P_{k-2}^{(1)} P_{k-1}^{(1)}\right)}{c\left(x P_{k-2}^{(1)} P_{k-2}^{(1)}\right)}=-\frac{\left(\tilde{\mathbf{z}}_{k-2}, q_{3}\right)}{\left(\tilde{\mathbf{z}}_{k-2}, q_{4}\right)}\)
32: \(\quad E_{k}=-\frac{c\left(x^{2} P_{k-1}^{(1)} P_{k-1}^{(1)}\right)}{c\left(x P_{k-1}^{(1)} P_{k-1}^{(1)}\right)}=-\frac{\left(\tilde{\mathbf{z}}_{k-1}, q_{3}\right)}{\left(\tilde{\mathbf{z}}_{k-1}, q_{2}\right)}\)
33: \(\mathbf{z}_{k}=C_{k} \mathbf{z}_{k-2}+q_{2}+E_{k} \mathbf{z}_{k-1}\)
34: \(\tilde{\mathbf{z}}_{k}=C_{k} \tilde{\mathbf{z}}_{k-2}+s+E_{k} \tilde{\mathbf{z}}_{k-1}\)
35: else
36: \(\mathbf{x}=\mathbf{x}_{k}\)
37: stop
38: end if
39: end for
```

Algorithm 1 has been implemented in Matlab and tested on the following problem which was considered in [17, 1, 33, 21]. This problem arises in the 5 -point discretisation of the operator $\frac{-d^{2}}{d x^{2}}-\frac{d^{2}}{d y^{2}}+\gamma \frac{d}{d x}$ on a rectangular region, $[17,1]$. Comparative results on instances of the problem $A \mathbf{x}=\mathbf{b}$ ranging from dimension 10 to 900 for parameter δ taking value 0.0 and 0.2 and for the tolerance $\epsilon=10^{-05}$ are recorded in Tables 1 and 2.

$$
A=\left(\begin{array}{ccccc}
B & -I & \cdots & \cdots & 0 \\
-I & B & -I & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & -I & B & -I \\
0 & \cdots & \cdots & -I & B
\end{array}\right)
$$

with

$$
B=\left(\begin{array}{ccccc}
4 & \alpha & \cdots & \cdots & 0 \\
\beta & 4 & \alpha & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \beta & 4 & \alpha \\
0 & \cdots & & \beta & 4
\end{array}\right)
$$

and $\alpha=-1+\delta, \beta=-1-\delta$. When $\delta=0$, the matrix of coefficients A is symmetric and the problem is easy to solve. For $\delta=0.2$ the matrix A is non-symmetric and the problem is comparatively harder as the region is not a regular mesh. The dimension of the matrix $B=10$. The right hand side \mathbf{b} is taken to be $\mathbf{b}=A \mathbf{x}$, where $\mathbf{x}=(1,1, \ldots, 1)^{T}$, is the solution of the system.

Table 1. A_{19} / B_{6} versus $A_{12}, A_{12}^{\text {new }}, A_{5} / B_{10}$ and A_{8} / B_{10} for problems of different dimensions when $\delta=0$

n	A_{5} / B_{10}		A_{8} / B_{10}		A_{12}		$A_{12}^{\text {new }}$		A_{19} / B_{6}	
	$\left\|r_{k}\right\|$	t(sec)	$\left\|r_{k}\right\|$	t(sec)	$\left\|r_{k}\right\| \mid$	t(sec)	$\left\|r_{k}\right\|$	t (sec)	$\left\|r_{k}\right\| \mid$	t(sec)
10	$2.2940 E^{-13}$	0.010854	$1.7704 E^{-13}$	0.010376	$4.9623 E^{-13}$	0.048924	$2.9118 E^{-13}$	0.020067	$6.8468 E^{-13}$	0.008025
20	$2.5256 E^{-14}$	0.011083	$1.7489 E^{-13}$	0.010333	$1.7536 E^{-13}$	0.048976	$2.4453 E^{-15}$	0.020012	$6.1935 E^{-07}$	0.008509
30	$3.9026 E^{-09}$	0.011525	$4.9472 E^{-09}$	0.010885	$5.4705 E^{-08}$	0.049626	$2.5346 E^{-10}$	0.021378	$8.5523 E^{-06}$	0.009085
40	$1.4770 E^{-10}$	0.011533	$8.4658 E^{-10}$	0.011027	$1.4776 E^{-08}$	0.049785	$3.6924 E^{-11}$	0.021413	$8.1290 E^{-06}$	0.010240
50	$1.9959 E^{-06}$	0.012044	$1.3598 E^{-06}$	0.011429	$4.7994 E^{-06}$	0.051143	$1.2732 E^{-06}$	0.022533	$9.2021 E^{-06}$	0.010890
60	$9.1910 E^{-06}$	0.012473	$3.7470 E^{-06}$	0.011487	$5.0010 E^{-06}$	0.051385	$2.3592 E^{-06}$	0.022561	$3.1422 E^{-06}$	0.010661
70	$4.9035 E^{-06}$	0.013022	$4.2579 E^{-06}$	0.012160	$1.3781 E^{-06}$	0.052743	$5.1279 E^{-07}$	0.023865	$4.5622 E^{-06}$	0.011104
80	$4.4311 E^{-06}$	0.013973	$7.7199 E^{-06}$	0.013356	$7.5581 E^{-06}$	0.052522	$3.5448 E^{-06}$	0.023640	$7.2687 E^{-06}$	0.011604
90	NaN		$9.2478 E^{-06}$	0.019182	$6.2686 E^{-06}$	0.055501	$4.4189 E^{-06}$	0.024360	$3.4159 E^{-06}$	0.012699
100	$1.1889 E^{-06}$	0.013331	$3.1695 E^{-06}$	0.012546	$8.9530 E^{-07}$	0.052106	$2.3809 E^{-07}$	0.023172	$5.8577 E^{-06}$	0.012053
200	NaN		NaN		NaN		$8.2198 E^{-06}$	0.041164	$5.8982 E^{-06}$	0.026923
300	NaN		NaN		NaN		$7.3650 E^{-06}$	0.083002	$3.6483 E^{-06}$	0.055710
400	NaN		NaN		NaN		$8.2378 E^{-06}$	0.121768	$8.9684 E^{-06}$	0.130579
500	NaN		NaN		NaN		$9.8283 E^{-06}$	0.990127	$7.5932 E^{-06}$	0.260776
600	NaN		NaN		NaN		$9.8207 E^{-06}$	1.574158	$9.8773 E^{-06}$	0.466735
700	NaN		NaN		NaN		$9.4625 E^{-06}$	2.854015	$9.7121 E^{-06}$	0.720233
800	NaN		NaN		NaN		$9.1387 E^{-06}$	4.476857	$8.6149 E^{-06}$	1.254427
900	$N a N$		NaN		NaN		NaN		$7.4319 E^{-06}$	4.066442

The results show that for $\delta=0$ algorithm A_{19} / B_{6} solved the given problems for dimensions up to 900 while the existing three algorithms namely $A_{5} / B_{10}, A_{8} / B_{10}$ and A_{12} failed on systems of dimension $n>100$.

Table 2. A_{19} / B_{6} versus $A_{12}, A_{12}^{\text {new }}, A_{5} / B_{10}$ and A_{8} / B_{10} for problems of different dimensions when $\delta=0.2$

n	A_{5} / B_{10}		A_{8} / B_{10}		A_{12}		$A_{12}^{\text {new }}$		A_{19} / B_{6}					
	$\left\|r_{k}\right\| \mid$	t(sec)	$\left\\|r_{k}\right\\|$	t(sec)	$\left\|r_{k}\right\|$ \|	t(sec)	$\left\\|r_{k}\right\\|$	t(sec)	$\left\|r_{k}\right\|$ \|	t(sec)				
10	$9.8216 E^{-10}$	0.017858	$2.3567 E^{-10}$	0.010808	$2.0583 E^{-08}$	0.049232	$4.7266 E^{-08}$	0.021279	$7.5451 E^{-06}$	0.017863				
20	$4.1778 E^{-11}$	0.011341	$5.8526 E^{-11}$	0.010930	$6.3915 E^{-10}$	0.049101	$5.9892 E^{-10}$	0.021293	$3.7108 E^{-06}$	0.020886				
30	$2.6438 E^{-06}$	0.012366	$5.9072 E^{-06}$	0.012117	$5.9403 E^{-06}$	0.050672	$6.8627 E^{-06}$	0.022881	$9.2819 E^{-06}$	0.021169				
40	NaN		NaN		$7.6080 E^{-06}$	0.051437	$7.8688 E^{-06}$	0.023776	$6.8914 E^{-06}$	0.023724				
50	NaN		NaN		$8.8143 E^{-06}$	0.066431	$5.0100 E^{-06}$	0.028116	$7.2611 E^{-06}$	0.022813				
60	NaN		NaN		NaN		$2.6424 E^{-06}$	0.024839	$5.9941 E^{-06}$	0.025928				
70	NaN		NaN		NaN		$9.9853 E^{-06}$	0.237743	$9.3422 E^{-06}$	0.024190				
80	NaN		NaN		NaN		NaN		$3.8215 E^{-06}$	0.025606				
90	NaN		NaN		NaN		$N a N$		$7.7488 E^{-06}$	0.037380				
100	NaN		NaN		NaN		NaN		$7.7186 E^{-06}$	0.045345				
200	NaN		NaN		NaN		NaN		$3.5339 E^{-06}$	0.052006				
300	NaN		NaN		NaN		NaN		$6.5440 E^{-06}$	0.136388				
400	NaN		NaN		NaN		NaN		$7.2847 E^{-06}$	0.259785				
500	NaN		NaN		NaN		NaN		$2.8823 E^{-06}$	0.278282				
600	NaN		NaN		NaN		NaN		$8.9049 E^{-06}$	0.445157				

As can be seen in Table 2, for $\delta=0.2$, algorithm A_{19} / B_{6} solved the given problems for dimensions up to 500 while algorithms A_{5} / B_{10}, and A_{8} / B_{10} failed for $n=40$ and $A_{12}, A_{12}^{\text {new }}$ failed for $n=60$ and above.
If we decrease the tolerance ϵ from 10^{-05} to 10^{-013} the numerical results are strongly in favor of A_{19} / B_{6} which is clear from Table 3 and Table 4.

Table 3. A_{19} / B_{6} versus $A_{12}, A_{12}^{\text {new }}, A_{5} / B_{10}$ and A_{8} / B_{10} for problems of different dimensions when $\delta=0$

n	A_{5} / B_{10}		A_{8} / B_{10}		A_{12}		$A_{12}^{\text {new }}$		A_{19} / B_{6}	
	$\left\|r_{k}\right\| \mid$	t(sec)								
10	$4.5196 e^{-015}$	0.010969	$4.4052 e^{-014}$	0.010418	$3.4389 e^{-014}$	0.048920	$2.9118 e^{-015}$	0.020013	$9.4527 e^{-014}$	0.019143
20	$2.5256 e^{-014}$	0.010665	$1.6217 e^{-014}$	0.010309	$4.4538 e^{-014}$	0.048298	$2.4453 e^{-015}$	0.019989	$8.2368 e^{-014}$	0.019618
30	NaN		NaN		$N a N$		$9.2583 e^{-014}$	0.030612	$3.2875 e^{-014}$	0.023630
40	$N a N$		NaN		$N a N$		$8.4447 e^{-014}$	0.027055	$2.2496 e^{-014}$	0.027095
50	NaN		NaN		NaN		$4.4856 e^{-014}$	0.057526	$1.5384 e^{-014}$	0.027677
60	NaN		NaN		NaN		NaN		$3.9895 e^{-014}$	0.025539
70	$N a N$		NaN		$N a N$		$9.0212 e^{-014}$	0.047472	$2.0157 e^{-014}$	0.027536
80	NaN		NaN		NaN		NaN		$7.3023 e^{-014}$	0.028718
90	NaN		NaN		NaN		$4.5477 e^{-014}$	0.072918	$6.4488 e^{-014}$	0.032048
100	NaN		NaN		NaN		$6.8764 e^{-014}$	0.193226	$4.8541 e^{-014}$	0.030108
200	$N a N$		NaN		NaN		$7.6191 e^{-014}$	0.359243	$4.8439 e^{-014}$	0.076182
300	NaN		NaN		NaN		$4.3659 e^{-014}$	1.027307	$6.8328 e^{-014}$	0.227479
400	$N a N$		$N a N$		$N a N$		$9.7388 e^{-014}$	3.493297	$7.2821 e^{-014}$	0.517246
500	$N a N$		$N a N$		$N a N$		$9.5239 e^{-014}$	10.783390	$6.3551 e^{-014}$	1.951565

The results show that for $\epsilon=10^{-013}$ and $\delta=0$ algorithms A_{19} / B_{6} and $A_{12}^{\text {new }}$ solved the given problem for dimensions up to 500 while A_{5} / B_{10}, A_{8} / B_{10} and A_{12} failed for $n=30$ and above.

Table 4. A_{19} / B_{6} versus $A_{12}, A_{12}^{\text {new }}, A_{5} / B_{10}$ and A_{8} / B_{10} for problems of different dimensions when $\delta=0.2$

n	A_{5} / B_{10}		A_{8} / B_{10}		A_{12}		$A_{12}^{\text {new }}$		A_{19} / B_{6}				
	$\\| r_{k} \mid$	t(sec)	$\left\|r_{k}\right\| \mid$	t(sec)	$\left\|r_{k}\right\| \mid$	t(sec)	$\left\\|r_{k}\right\\|$	t(sec)	$\left\|r_{k}\right\| \mid$	t(sec)			
10	$1.4521 E^{-14}$	0.012071	$4.7905 E^{-14}$	0.011465	$2.9806 E^{-14}$	0.050647	NaN		$2.4294 E^{-14}$	0.020081			
20	NaN		NaN		NaN		NaN		$6.0869 E^{-14}$	0.028402			
30	$N a N$		$N a N$		NaN		NaN		$5.1766 E^{-14}$	0.028676			
40	NaN		NaN		NaN		NaN		$5.1502 E^{-14}$	0.032685			
50	NaN		NaN		NaN		NaN		$8.9242 E^{-14}$	0.031879			
60	NaN		NaN		NaN		NaN		$1.9212 E^{-14}$	0.037306			
70	NaN		NaN		NaN		NaN		$5.5211 E^{-14}$	0.048051			
80	NaN		NaN		NaN		NaN		$9.8420 E^{-14}$	0.049704			
90	NaN		$N a N$		NaN		NaN		$5.0930 E^{-14}$	0.061245			
100	NaN		NaN		NaN		NaN		$9.0537 E^{-14}$	0.069353			
200	NaN		NaN		NaN		NaN		$1.0460 E^{-14}$	0.126791			

Again, for $\epsilon=10^{-013}$ and $\delta=0.2$ algorithm A_{19} / B_{6} solved the given problems up to dimension 200 while the other algorithms failed for $n=10$ and above. The obvious reason is breakdown, [19, 20]. Since all these algorithms consist of recursively computing P_{k} and $P_{k}^{(1)}$, which involves the calculation of some scalar products appearing as denominators and numerators of the coefficient of the recurrence relationships, when any of the denominators become very small, as small as, for instance 2.3879×10^{-014}, breakdown occurs and the algorithms fail. This breakdown issue is being investigated further and any finding will be reported in forthcoming papers.

According to $[1,17,21,33]$, algorithms $A_{12}, A_{12}^{\text {new }}, A_{5} / B_{10}$ and A_{8} / B_{10} are considered as the most robust Lanczos-type algorithms. We have now compared our new algorithm with these algorithms on a standard problem considered in this paper and elsewhere. Our results show that algorithm A_{19} / B_{6} is faster through out, and more robust overall.

3. Conclusion

In this paper, we derived the recurrence relation $A_{19}[17]$ and recalled B_{6} [1] both using the general auxilliary polynomial $U_{i}(x)$. We used A_{19} in tandem with B_{6} to derive a new Lanczos-type algorithm A_{19} / B_{6}. This new algorithm has been applied to a number of instances of some standard test problem considered in $[17,1,33]$ and elsewhere. The performance of this algorithm is compared to that of existing and well established algorithms of the same type namely, $A_{12}, A_{12}^{\text {new }}, A_{5} / B_{10}$ and $A_{8} / B_{10},[2,17,33]$. Numerical results are strongly in favour of the new algorithm A_{19} / B_{6}.

References

[1] C. Baheux. Algorithmes d'implementation de la méthode de Lanczos. PhD thesis, University of Lille 1, France, 1994.
[2] C. Baheux. New Implementations of Lanczos Method. Journal of Computational and Applied Mathematics, 57:3-15, 1995.
[3] A. Bjôrck, T. Elfving, and Z. Strakos. Stability of Conjugate Gradient and Lanczos Methods for Linear Least Squares Problems. SIAM Journal of Matrix Analysis and Application, 19:720-736, 1998.
[4] C. Brezinski. Padé-Type Approximation and General Orthogonal Polynomials, Internat. Ser. Nuner. Math. 50. Birkhäuser, Basel, 1980.
[5] C. Brezinski and H. Sadok. Lanczos-type algorithms for solving systems of linear equations. Applied Numerical Mathematics, 11:443-473, 1993.
[6] C. Brezinski and M. R. Zaglia. A new presentation of orthogonal polynomials with applications to their computation. Numerical Algorithms, 1:207-222, 1991.
[7] C. Brezinski and M. R. Zaglia. Hybird procedures for solving linear systems. Numerische Mathematik, 67:1-19, 1994.
[8] C. Brezinski, M. R. Zaglia, and H. Sadok. Avoiding breakdown and nearbreakdown in Lanczos type algorithms. Numerical Algorithms, 1:261-284, 1991.
[9] C. Brezinski, M. R. Zaglia, and H. Sadok. A Breakdown-free Lanczos type algorithm for solving linear systems. Numerische Mathematik, 63:29-38, 1992.
[10] C. Brezinski, M. R. Zaglia, and H. Sadok. New look-ahead Lanczos-type algorithms for linear systems. Numerische Mathematik, 83:53-85, 1999.
[11] C. Brezinski, M. R. Zaglia, and H. Sadok. The matrix and polynomial approaches to Lanczos-type algorithms. Journal of Computational and Applied Mathematics, 123:241-260, 2000.
[12] C. Brezinski, M. R. Zaglia, and H. Sadok. A review of formal orthogonality in Lanczos-based methods. Journal of Computational and Applied Mathematics, 140:81-98, 2002.
[13] C. G. Broyden and M. T. Vespucci. Krylov Solvers For Linear Algebraic Systems. Elsevier, Amsterdam, The Netherlands, 2004.
[14] D. Calvetti, L. Reichel, F. Sgallari, and G. Spaletta. A Regularizing Lanczos iteration method for underdetermined linear systems. Jouranl of Computational and Applied Mathematics, 115:101-120, 2000.
[15] G. Cybenko. An explicit formula for Lanczos plonomials. Linear Algebra Appl., 88/89:99-115, 1987.
[16] A. Draux. Polynômes Orthogonaux Formels. Application, LNM 974. SpringerVerlag, Berlin, 1983.
[17] M. Farooq. New Lanczos-type Algorithms and their Implementation. PhD thesis, University of Essex, UK, 2011. http://serlib0.essex.ac.uk/record= b1754556.
[18] M. Farooq and A. Salhi. New Recurrence Relationships between Orthogonal Polynomials which Lead to New Lanczos-type Algorithms. Journal of Prime Research in Mathematics, 8:61-75, 2012.
[19] M. Farooq and A. Salhi. A Restarting Approach to Beating the Inherent Instability of Lanczos-type Algorithms. Iranian Journal of Science and Technology, Transaction A-Science, 37(3.1):349-358, 2013.
[20] M. Farooq and A. Salhi. A Switching Approach to Avoid Breakdown in Lanczostype Algorithms. Applied Mathematics and Information Sciences, 8(5):21612169, 2014.
[21] M. Farooq and A. Salhi. A new Lanczos-type algorithm for system of linear equations. Journal of Prime Research in Mathematics, 10:116-121, 2015.
[22] R. Fletcher. Conjugate Gradient methods for indefinite systems. In G.A. Watson, editor, Numerical Analysis, Dundee 1975, Lecture Notes in Mathematics,, volume 506. Springer, Berlin, 1976.
[23] A. Greenbaum. Iterative Methods for Solving Linear System. Society for Industrial and Applied Mathematics, Philadelphia, 1997.
[24] A. El Guennouni. A unified approach to some strategies for the treatment of breakdown in Lanczos-type algorithms. Applicationes Mathematicae, 26:477-488, 1999.
[25] M. R. Hestenes and E. Stiefel. Mehtods of Conjugate Gradients for solving linear systems. Journal of the National Bureau of Standards, 49:409-436, 1952.
[26] C. Lanczos. An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integeral Operators. Journal of Research of the National Bureau of Standards, 45:255-282, 1950.
[27] C. Lanczos. Solution of systems of linear equations by minimized iteration. Journal of the National Bureau of Standards, 49:33-53, 1952.
[28] G. Meurant. The Lanczos and Conjugate Gradient algorithms, From Theory to Finite Precision Computations. SIAM, Philadelphia, 2006.
[29] B. N. Parlett and D. S. Scott. The Lanczos Algorithm With Selective Orthogonaliztion. Mathematics of Computation, 33:217-238, 1979.
[30] B. N. Parlett, D. R. Taylor, and Z. A. Liu. A Look-Ahead Lanczos Algorithm for Unsymmetric Matrices. Mathematics of Computation, 44:105-124, 1985.
[31] Y. Saad. On the Lanczos method for solving linear system with several right-hand sides. Mathematics of Computation, 48:651-662, 1987.
[32] G. Szegö. Orthogonal Polynomials. American Mathematical Society, Providence, Rhode Island, 1939.
[33] S. Ullah, M. Farooq, and A. Salhi. An alternative derivation of a new Lanczostype algorithm for systems of linear equations. Punjab University Journal of Mathematics, 45:39-49, 2013.
[34] H. A. Van Der Vorst. An iterative solution method for solving $\mathrm{f}(A) \mathbf{x}=\mathbf{b}$, using Krylov subspace information obtained for the symmetric positive definite matrix A. Journal of Computational and Applied Mathematics, 18(2):249-263, 1987.
[35] Q. Ye. A Breakdown-Free Variation of the Nonsymmetric Lanczos Algorithms. Mathematics of Computation, 62:179-207, 1994.

[^0]: ${ }^{1}$ Department of Mathematics, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan. Email: zakirmath728@gmail.com
 ${ }^{2}$ Department of Mathematics, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan. Email: mfarooq@upesh.edu.pk
 ${ }^{3}$ Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK. E-mail: as@essex.ac.uk.

