15 research outputs found
Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome
BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P<10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.</p
Long QT syndrome : studies of diagnostic methods
Background: The Long QT Syndrome (LQTS) is a hereditary heart disease with risk of malignant ventricular arrhythmia and sudden cardiac death. Despite our increased knowledge about genotype and phenotype correlation we still rely on the 12-lead ECG for assessment of the QT interval and the T-wave morphology for diagnosis and risk stratification. Intra- and -inter individual variability in manually QT measurement and, e.g., difficulties in defining the end of the T-wave may impair the diagnosis of LQTS. Increased heterogeneity in ventricular repolarization (VR) may be an important factor in the arrhythmogenicity in cases of LQTS. In a LQTS founder population the same mutation is carried by numerous individuals in many families which provide a unique opportunity to study diagnostic methods, risk assessment, VR and the correlation between genotype and phenotype. Methods: Resting 12-lead ECG and vectorcardiogram (VCG) were recorded in 134 LQTS mutation carriers and 121 healthy controls, to investigate the capability and precision in measuring the QT interval. For assessment of the VR, VCG was compared in individuals with mutations in the KCNQ1 and KCNH2 gene. Genealogical and geographic studies were performed in 37 index cases and their relatives to determine if Swedish carriers of the Y111C mutation in the KCNQ1 gene constitute a founder population. To confirm kinship, haplotype analysis was performed in 26 of the 37 index cases. The age and prevalence of the Y111C mutation were calculated in families sharing a common haplotype. Results: VCG by automatic measurement of the QT interval provided the best combination of sensitivity (90%) and specificity (89%) in the diagnosis of LQTS. VCG showed no consistent pattern of increased VR heterogeneity among KCNQ1 and KCNH2 mutation carriers. Living carriers of the Y111C mutation shared a common genetic (haplotype), genealogic and geographic origin. The age of the Y111C mutation was approximately 600 years. The prevalence of living carriers of the Y111C mutation in the mid-northern Sweden was estimated to 1:1,500-3,000. Conclusion: We have shown that VCG provides a valuable contribution to the diagnosis and risk assessment of LQTS in adults and children. No consistent pattern of increased VR heterogeneity was found among the LQTS mutation carriers. The identified Swedish LQTS founder population will be a valuable source to future LQTS research and may contribute to increase our understanding of LQTS and the correlation of phenotype, genotype and modifying factors
LQTS founder population in Northern Sweden – the natural history of a potentially fatal inherited cardiac disorder
Long QT Syndrome (LQTS) is an autosomal dominant inherited cardiac disorder associated with life-threatening arrhythmias. In northern Sweden, a LQTS founder mutation (p.Y111C, KCNQ1 gene) was verified by genetic haplotype analysis and genealogical studies, and a common ancestor couple was identified. Clinical studies of this population revealed an apparent mild phenotype. However, due to early commencement of prophylactic treatment, the natural history of this disorder cannot be properly assessed based only on clinical data. By using the family tree mortality ratio method (FTMR), we assessed the natural history of the untreated LQTS founder population. The principle of FTMR is to compare the age-specific mortality rates in a historic population harboring an inherited disorder with the corresponding mortality rates in an unaffected control population. Initially, we used the general Swedish population during the same period for comparison and observed an apparent increased longevity in the p.Y111C study population. However, when using a control population born in the same area, we observed no differences regarding overall mortality. Moreover, patterns suggesting age- and sex-stratified excess mortality, in accordance with previous LQTS studies, were evident. This study shows the importance of being aware of historical demographic patterns to avoid misinterpreting when comparing historical data
QT correction using Bazett's formula remains preferable in long QT syndrome type 1 and 2
Background: The heart rate (HR) corrected QT interval (QTc) is crucial for diagnosis and risk stratification in the long QT syndrome (LQTS). Although its use has been questioned in some contexts, Bazett's formula has been applied in most diagnostic and prognostic studies in LQTS patients. However, studies on which formula eliminates the inverse relation between QT and HR are lacking in LQTS patients. We therefore determined which QT correction formula is most appropriate in LQTS patients including the effect of beta blocker therapy and an evaluation of the agreement of the formulae when applying specific QTc limits for diagnostic and prognostic purposes. Methods: Automated measurements from routine 12-lead ECGs from 200 genetically confirmed LQTS patients from two Swedish regions were included (167 LQT1, 33 LQT2). QT correction was performed using the Bazett, Framingham, Fridericia, and Hodges formulae. Linear regression was used to compare the formulae in all patients, and before and after the initiation of beta blocking therapy in a subgroup (n = 44). Concordance analysis was performed for QTc >= 480 ms (diagnosis) and >= 500 ms (prognosis). Results: The median age was 32 years (range 0.1-78), 123 (62%) were female and 52 (26%) were children <= 16 years. Bazett's formula was the only method resulting in a QTc without relation with HR. Initiation of beta blocking therapy did not alter the result. Concordance analyses showed clinically significant differences (Cohen's kappa 0.629-0.469) for diagnosis and prognosis in individual patients. Conclusion: Bazett's formula remains preferable for diagnosis and prognosis in LQT1 and 2 patients
LQTS founder population in Northern Sweden – the natural history of a potentially fatal inherited cardiac disorder
Long QT Syndrome (LQTS) is an autosomal dominant inherited cardiac disorder associated with life-threatening arrhythmias. In northern Sweden, a LQTS founder mutation (p.Y111C, KCNQ1 gene) was verified by genetic haplotype analysis and genealogical studies, and a common ancestor couple was identified. Clinical studies of this population revealed an apparent mild phenotype. However, due to early commencement of prophylactic treatment, the natural history of this disorder cannot be properly assessed based only on clinical data. By using the family tree mortality ratio method (FTMR), we assessed the natural history of the untreated LQTS founder population. The principle of FTMR is to compare the age-specific mortality rates in a historic population harboring an inherited disorder with the corresponding mortality rates in an unaffected control population. Initially, we used the general Swedish population during the same period for comparison and observed an apparent increased longevity in the p.Y111C study population. However, when using a control population born in the same area, we observed no differences regarding overall mortality. Moreover, patterns suggesting age- and sex-stratified excess mortality, in accordance with previous LQTS studies, were evident. This study shows the importance of being aware of historical demographic patterns to avoid misinterpreting when comparing historical data
LQTS founder population in Northern Sweden – the natural history of a potentially fatal inherited cardiac disorder
Long QT Syndrome (LQTS) is an autosomal dominant inherited cardiac disorder associated with life-threatening arrhythmias. In northern Sweden, a LQTS founder mutation (p.Y111C, KCNQ1 gene) was verified by genetic haplotype analysis and genealogical studies, and a common ancestor couple was identified. Clinical studies of this population revealed an apparent mild phenotype. However, due to early commencement of prophylactic treatment, the natural history of this disorder cannot be properly assessed based only on clinical data. By using the family tree mortality ratio method (FTMR), we assessed the natural history of the untreated LQTS founder population. The principle of FTMR is to compare the age-specific mortality rates in a historic population harboring an inherited disorder with the corresponding mortality rates in an unaffected control population. Initially, we used the general Swedish population during the same period for comparison and observed an apparent increased longevity in the p.Y111C study population. However, when using a control population born in the same area, we observed no differences regarding overall mortality. Moreover, patterns suggesting age- and sex-stratified excess mortality, in accordance with previous LQTS studies, were evident. This study shows the importance of being aware of historical demographic patterns to avoid misinterpreting when comparing historical data
To Modify or Not to Modify : Allele-Specific Effects of 3’UTR-KCNQ1 Single Nucleotide Polymorphisms on Clinical Phenotype in a Long QT 1 Founder Population Segregating a Dominant-Negative Mutation
BACKGROUND: There are conflicting reports with regard to the allele-specific gene suppression effects of single nucleotide polymorphisms (SNPs) in the 3’untranslated region (3’UTR) of the KCNQ1 gene in long QT syndrome type 1 (LQT1) populations. Here we assess the allele-specific effects of 3 previously published 3’UTR-KCNQ1’s SNPs in a LQT1 founder population segregating a dominant-negative mutation. METHODS AND RESULTS: Bidirectional sequencing of the KCNQ1’s 3’UTR was performed in the p.Y111C founder population (n=232, 147 genotype positive), with a minor allele frequency of 0.1 for SNP1 (rs2519184) and 0.6 for linked SNP2 (rs8234) and SNP3 (rs107980). Allelic phase was assessed in trios aided by haplotype data, revealing a high prevalence of derived SNP2/3 in cis with p.Y111C (89%). Allele-specific association analyses, corrected using a relatedness matrix, were performed between 3’UTR-KCNQ1 SNP genotypes and clinical phenotypes. SNP1 in trans was associated with a significantly higher proportion of symptomatic phenotype compared with no derived SNP1 allele in trans (58% versus 32%, corrected P=0.027). SNP2/3 in cis was associated with a significantly lower proportion of symptomatic phenotype compared with no derived SNP2/3 allele in cis (32% versus 69%, corrected P=0.010). CONCLUSIONS: Allele-specific modifying effects on symptomatic phenotype of 3’UTR-KCNQ1 SNPs rs2519184, rs8234, and rs107980 were seen in a LQT1 founder population segregating a dominant-negative mutation. The high prevalence of sup-pressive 3’UTR-KCNQ1 SNPs segregating with the founder mutation could contribute to the previously documented low incidence of cardiac events in heterozygous carriers of the p.Y111C KCNQ1 mutation
To Modify or Not to Modify: Allele‐Specific Effects of 3'UTR‐KCNQ1 Single Nucleotide Polymorphisms on Clinical Phenotype in a Long QT 1 Founder Population Segregating a Dominant‐Negative Mutation
Background There are conflicting reports with regard to the allele‐specific gene suppression effects of single nucleotide polymorphisms (SNPs) in the 3'untranslated region (3'UTR) of the KCNQ1 gene in long QT syndrome type 1 (LQT1) populations. Here we assess the allele‐specific effects of 3 previously published 3'UTR‐KCNQ1's SNPs in a LQT1 founder population segregating a dominant‐negative mutation. Methods and Results Bidirectional sequencing of the KCNQ1's 3'UTR was performed in the p.Y111C founder population (n=232, 147 genotype positive), with a minor allele frequency of 0.1 for SNP1 (rs2519184) and 0.6 for linked SNP2 (rs8234) and SNP3 (rs107980). Allelic phase was assessed in trios aided by haplotype data, revealing a high prevalence of derived SNP2/3 in cis with p.Y111C (89%). Allele‐specific association analyses, corrected using a relatedness matrix, were performed between 3'UTR‐KCNQ1 SNP genotypes and clinical phenotypes. SNP1 in trans was associated with a significantly higher proportion of symptomatic phenotype compared with no derived SNP1 allele in trans (58% versus 32%, corrected P=0.027). SNP2/3 in cis was associated with a significantly lower proportion of symptomatic phenotype compared with no derived SNP2/3 allele in cis (32% versus 69%, corrected P=0.010). Conclusions Allele‐specific modifying effects on symptomatic phenotype of 3'UTR‐KCNQ1 SNPs rs2519184, rs8234, and rs107980 were seen in a LQT1 founder population segregating a dominant‐negative mutation. The high prevalence of suppressive 3'UTR‐KCNQ1 SNPs segregating with the founder mutation could contribute to the previously documented low incidence of cardiac events in heterozygous carriers of the p.Y111C KCNQ1 mutation
ICD harm and benefit: risk scores applied to the Swedish ICD-treated LQTS population
The use of implantable cardioverter defibrillators (ICDs) in long QT syndrome (LQTS) patients is essential in high-risk patients. However, it is sometimes used in patients without high-risk profiles for whom the expected benefit may be lower than the risk of ICD harm. Here, we evaluated ICD benefit and harm by assessing risk according to risk scores and pre-ICD clinical characteristics. Design. We studied 109 Swedish LQTS patients drawn from the Swedish ICD and Pacemaker Registry with data collected from medical records. In addition to clinical characteristics, we used two risk scores to assess pre-ICD risk, and evaluated ICD benefit and harm. Results. Twenty percent of all patients received ≥1 appropriate shock with a first appropriate shock incidence rate of 4.3 per 100 person-years. A long QTc (≥550 ms) and double mutations were significantly associated with appropriate shock. Low risk scores among patients without pre-ICD aborted cardiac arrest were not significantly associated with low risk of first appropriate shock. The incidence rates of a first inappropriate shock and first complication were 3.0 and 7.6 per 100 person-years, respectively. Conclusion. Our findings on ICD harm emphasize the importance of careful individual pre-ICD consideration. When we applied two risk scores to patients without pre-ICD aborted cardiac arrest, we could not validate their ability to identify patients with low risk of appropriate shocks and patients who were assessed as having a low risk still received appropriate shocks. This further supports the complexity of risk stratification and the difficulty of using risk scores
Third Trimester Fetal Heart Rate Predicts Phenotype and Mutation Burden in the Type 1 Long QT Syndrome.
-Early diagnosis and risk stratification is of clinical importance in the Long QT Syndrome (LQTS), however little genotype-specific data are available regarding fetal LQTS. We investigate third trimester fetal heart rate, routinely recorded within public maternal health care, as a possible marker for LQT1 genotype and phenotype