16 research outputs found
Conception et réalisation de trieur spectraux pour l'imagerie
The advancement and scaling effect in complementary metal oxide semiconductor (CMOS) and micro-electro-mechanical system (MEMS) technology has made possible to make smaller image sensors with higher density of imaging pixels to respond at the demand of low cost imagers. Generally, the higher pixel density in imaging system is achieved by shrinking the size of each pixel in an array. The shrinking of pixel dimension however deteriorates the optical efficiency and therefore impose the tradeoff between the performance and minimum achievable pixel size. As the pixel size continues to shrink and approach the dimensions comparable to the wavelength, the spectral separation techniques used in current generation imaging system should be revised and new design methodologies have to be explored. This dissertation explored different techniques that could be used to efficiently sort the band of different wavelengths, mainly in far-infrared (8µm - 12µm) and visible (0.4 µm – 0.7 µm) spectrum in different spatial locations. We introduced the concept of spectral sorting based on normalized optical efficiency (NOE). For given number of pixels (N) or detectors, we define the phenomenon of sorting if NOE of individual pixels, considering incidence power from all pixel domain, is greater than 1/N. First we study differently sized optical patch antenna to efficiently sort the infrared light in different spatial locations using numerical techniques. Using array of such antennas we find the near perfect absorption of multiple wavelengths in infrared spectrum. The antenna arrays are fabricated and characterized in CEA-LETI platform to validate our study. We also report our study on using two differently sized Metal-Semiconductor-Metal (MSM) nanostructures to achieve absorption higher than 50% in individual silicon detector for visible spectrum. Finally we present our study on grating based dielectric multilayer structure for sorting of visible light which could enable to shrink the pixel size of visible imaging system to submicron dimension. We derived the comprehensive design strategy of such sorting structure and present the sorting structure designed to achieve optical efficiency as high as 80% in pixel size of as less as 0.5µm.La miniaturisation des composants CMOS (complementary metal oxide semiconductor) et MEMS (micro-electro-mechanical system) a permis la réalisation de capteurs d'images de faible taille et à forte densité de pixels pour répondre à la demande d'imageurs faible coût. Classiquement, la grande densité de pixels est obtenue en réduisant simplement la taille des pixels. Cependant, cette réduction de taille détériore l'efficacité optique d'absorption des pixels, ce qui impose alors un compromis définissant une taille minimum de pixel. Les pixels ont aujourd'hui une taille de l'ordre de la longueur d'onde, et les systèmes de filtres de couleur qui eux aussi induisent parallèlement des pertes optiques, devraient être revus, de nouvelles méthodes de séparation spectrale devant être envisagées. Cette thèse explore diverses techniques pouvant être utilisées pour trier différentes longueurs d'ondes, principalement dans le lointain infrarouge (8µm-12µm) et dans le visible (0.4µm-0.7µm) vers les pixels adéquats, supprimant ainsi les pertes traditionnelles par filtrage (par absorption ou réflexion).Nous introduisons le concept de tri spectral basé sur la NOE (normalized optical efficiency), qui est le ratio de l'absorption d'un pixel sur l'énergie totale incidente sur un ensemble de pixels. Pour un nombre donné N de pixels d'une sous-matrice de l'imageur (matrice de Bayer), le phénomène de tri spectral a lieu lorsque le NOE de chaque pixel est supérieur à 1/N. Nous étudions tout d'abord par simulation optique des antennes patch de différentes tailles pour trier efficacement la lumière infrarouge. Le réseau d'antennes a été fabriqué et caractérisé dans la plateforme technologique du CEA-LETI pour valider l'étude théorique. Nous rapportons ensuite une étude sur l'utilisation de 2 structures MSM (metal-semiconductor-metal) pour atteindre une absorption supérieure à 50% à 2 longueurs d'ondes dans un détecteur Silicium. Finalement, nous présentons notre étude finale sur une structure multicouche assistée par réseau pour le tri spectral dans le visible, qui permettrait de réduire la taille des pixels dans les imageurs visibles sous le seuil du micron tout en améliorant l'efficacité d'absorption. Nous avons déduit une compréhension de la stratégie de design de telles structures de tri, et présentons une structure de tri conçue pour réaliser du tri spectral avec une efficacité de l'ordre de 80% pour des pixels de taille inférieure à 0,5µm
Conception and realization of spectral sorters
La miniaturisation des composants CMOS (complementary metal oxide semiconductor) et MEMS (micro-electro-mechanical system) a permis la réalisation de capteurs d'images de faible taille et à forte densité de pixels pour répondre à la demande d'imageurs faible coût. Classiquement, la grande densité de pixels est obtenue en réduisant simplement la taille des pixels. Cependant, cette réduction de taille détériore l'efficacité optique d'absorption des pixels, ce qui impose alors un compromis définissant une taille minimum de pixel. Les pixels ont aujourd'hui une taille de l'ordre de la longueur d'onde, et les systèmes de filtres de couleur qui eux aussi induisent parallèlement des pertes optiques, devraient être revus, de nouvelles méthodes de séparation spectrale devant être envisagées. Cette thèse explore diverses techniques pouvant être utilisées pour trier différentes longueurs d'ondes, principalement dans le lointain infrarouge (8µm-12µm) et dans le visible (0.4µm-0.7µm) vers les pixels adéquats, supprimant ainsi les pertes traditionnelles par filtrage (par absorption ou réflexion).Nous introduisons le concept de tri spectral basé sur la NOE (normalized optical efficiency), qui est le ratio de l'absorption d'un pixel sur l'énergie totale incidente sur un ensemble de pixels. Pour un nombre donné N de pixels d'une sous-matrice de l'imageur (matrice de Bayer), le phénomène de tri spectral a lieu lorsque le NOE de chaque pixel est supérieur à 1/N. Nous étudions tout d'abord par simulation optique des antennes patch de différentes tailles pour trier efficacement la lumière infrarouge. Le réseau d'antennes a été fabriqué et caractérisé dans la plateforme technologique du CEA-LETI pour valider l'étude théorique. Nous rapportons ensuite une étude sur l'utilisation de 2 structures MSM (metal-semiconductor-metal) pour atteindre une absorption supérieure à 50% à 2 longueurs d'ondes dans un détecteur Silicium. Finalement, nous présentons notre étude finale sur une structure multicouche assistée par réseau pour le tri spectral dans le visible, qui permettrait de réduire la taille des pixels dans les imageurs visibles sous le seuil du micron tout en améliorant l'efficacité d'absorption. Nous avons déduit une compréhension de la stratégie de design de telles structures de tri, et présentons une structure de tri conçue pour réaliser du tri spectral avec une efficacité de l'ordre de 80% pour des pixels de taille inférieure à 0,5µm.The advancement and scaling effect in complementary metal oxide semiconductor (CMOS) and micro-electro-mechanical system (MEMS) technology has made possible to make smaller image sensors with higher density of imaging pixels to respond at the demand of low cost imagers. Generally, the higher pixel density in imaging system is achieved by shrinking the size of each pixel in an array. The shrinking of pixel dimension however deteriorates the optical efficiency and therefore impose the tradeoff between the performance and minimum achievable pixel size. As the pixel size continues to shrink and approach the dimensions comparable to the wavelength, the spectral separation techniques used in current generation imaging system should be revised and new design methodologies have to be explored. This dissertation explored different techniques that could be used to efficiently sort the band of different wavelengths, mainly in far-infrared (8µm - 12µm) and visible (0.4 µm – 0.7 µm) spectrum in different spatial locations. We introduced the concept of spectral sorting based on normalized optical efficiency (NOE). For given number of pixels (N) or detectors, we define the phenomenon of sorting if NOE of individual pixels, considering incidence power from all pixel domain, is greater than 1/N. First we study differently sized optical patch antenna to efficiently sort the infrared light in different spatial locations using numerical techniques. Using array of such antennas we find the near perfect absorption of multiple wavelengths in infrared spectrum. The antenna arrays are fabricated and characterized in CEA-LETI platform to validate our study. We also report our study on using two differently sized Metal-Semiconductor-Metal (MSM) nanostructures to achieve absorption higher than 50% in individual silicon detector for visible spectrum. Finally we present our study on grating based dielectric multilayer structure for sorting of visible light which could enable to shrink the pixel size of visible imaging system to submicron dimension. We derived the comprehensive design strategy of such sorting structure and present the sorting structure designed to achieve optical efficiency as high as 80% in pixel size of as less as 0.5µm
Conception et réalisation de trieur spectraux pour l'imagerie
The advancement and scaling effect in complementary metal oxide semiconductor (CMOS) and micro-electro-mechanical system (MEMS) technology has made possible to make smaller image sensors with higher density of imaging pixels to respond at the demand of low cost imagers. Generally, the higher pixel density in imaging system is achieved by shrinking the size of each pixel in an array. The shrinking of pixel dimension however deteriorates the optical efficiency and therefore impose the tradeoff between the performance and minimum achievable pixel size. As the pixel size continues to shrink and approach the dimensions comparable to the wavelength, the spectral separation techniques used in current generation imaging system should be revised and new design methodologies have to be explored. This dissertation explored different techniques that could be used to efficiently sort the band of different wavelengths, mainly in far-infrared (8µm - 12µm) and visible (0.4 µm – 0.7 µm) spectrum in different spatial locations. We introduced the concept of spectral sorting based on normalized optical efficiency (NOE). For given number of pixels (N) or detectors, we define the phenomenon of sorting if NOE of individual pixels, considering incidence power from all pixel domain, is greater than 1/N. First we study differently sized optical patch antenna to efficiently sort the infrared light in different spatial locations using numerical techniques. Using array of such antennas we find the near perfect absorption of multiple wavelengths in infrared spectrum. The antenna arrays are fabricated and characterized in CEA-LETI platform to validate our study. We also report our study on using two differently sized Metal-Semiconductor-Metal (MSM) nanostructures to achieve absorption higher than 50% in individual silicon detector for visible spectrum. Finally we present our study on grating based dielectric multilayer structure for sorting of visible light which could enable to shrink the pixel size of visible imaging system to submicron dimension. We derived the comprehensive design strategy of such sorting structure and present the sorting structure designed to achieve optical efficiency as high as 80% in pixel size of as less as 0.5µm.La miniaturisation des composants CMOS (complementary metal oxide semiconductor) et MEMS (micro-electro-mechanical system) a permis la réalisation de capteurs d'images de faible taille et à forte densité de pixels pour répondre à la demande d'imageurs faible coût. Classiquement, la grande densité de pixels est obtenue en réduisant simplement la taille des pixels. Cependant, cette réduction de taille détériore l'efficacité optique d'absorption des pixels, ce qui impose alors un compromis définissant une taille minimum de pixel. Les pixels ont aujourd'hui une taille de l'ordre de la longueur d'onde, et les systèmes de filtres de couleur qui eux aussi induisent parallèlement des pertes optiques, devraient être revus, de nouvelles méthodes de séparation spectrale devant être envisagées. Cette thèse explore diverses techniques pouvant être utilisées pour trier différentes longueurs d'ondes, principalement dans le lointain infrarouge (8µm-12µm) et dans le visible (0.4µm-0.7µm) vers les pixels adéquats, supprimant ainsi les pertes traditionnelles par filtrage (par absorption ou réflexion).Nous introduisons le concept de tri spectral basé sur la NOE (normalized optical efficiency), qui est le ratio de l'absorption d'un pixel sur l'énergie totale incidente sur un ensemble de pixels. Pour un nombre donné N de pixels d'une sous-matrice de l'imageur (matrice de Bayer), le phénomène de tri spectral a lieu lorsque le NOE de chaque pixel est supérieur à 1/N. Nous étudions tout d'abord par simulation optique des antennes patch de différentes tailles pour trier efficacement la lumière infrarouge. Le réseau d'antennes a été fabriqué et caractérisé dans la plateforme technologique du CEA-LETI pour valider l'étude théorique. Nous rapportons ensuite une étude sur l'utilisation de 2 structures MSM (metal-semiconductor-metal) pour atteindre une absorption supérieure à 50% à 2 longueurs d'ondes dans un détecteur Silicium. Finalement, nous présentons notre étude finale sur une structure multicouche assistée par réseau pour le tri spectral dans le visible, qui permettrait de réduire la taille des pixels dans les imageurs visibles sous le seuil du micron tout en améliorant l'efficacité d'absorption. Nous avons déduit une compréhension de la stratégie de design de telles structures de tri, et présentons une structure de tri conçue pour réaliser du tri spectral avec une efficacité de l'ordre de 80% pour des pixels de taille inférieure à 0,5µm
Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts
Palanchoke U, Jovanov V, Kurz H, Obermeyer P, Stiebig H, Knipp D. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts. Optics Express. 2012;20(6): 6340.Plasmonic effects in amorphous silicon thin film solar cells with randomly textured metal back contact were investigated experimentally and numerically. The influence of different metal back contacts with and without ZnO interlayer was studied and losses in the individual layers of the solar cell were quantified. The amorphous silicon thin film solar cells were prepared on randomly textured substrates using large area production equipment and exhibit conversion efficiencies approaching 10%. The optical wave propagation within the solar cells was studied by Finite Difference Time Domain simulations. The quantum efficiency of solar cells with and without ZnO interlayer was simulated and the interplay between the reflection, quantum efficiency and absorption in the back contact will be discussed
Color Sensing by Optical Antennas: Approaching the Quantum Efficiency Limit
Tamang A, Parsons R, Palanchoke U, et al. Color Sensing by Optical Antennas: Approaching the Quantum Efficiency Limit. ACS Photonics. 2019;6(8):2041-2048.Color image sensing is commonly carried out by an array of color pixels. Each of the color pixels consists of at least three sensing elements in combination with optical filters for red, green and blue. The filters are arranged side-by-side limiting the total quantum efficiency of a color pixel to 1/N, where N is the number of color channels per color pixel. Hence, in the most basic filter arrangement, just consisting of a red, green, and blue filter, the upper limit of the quantum efficiency is equal to 1/3, limiting the dynamic range and color contrast of the detected optical input signal. In order to increase the quantum efficiency and improve the image quality, an alternative sensor device is proposed, which can be realized by using current semiconductor technology. The proposed sensor uses silicon optical antennas to detect the incident light. The sensor allows for detecting the color information, with quantum efficiencies approaching unity. The design of the optical antennas is described, and optimization strategies are discussed
Enhanced all-optical cavity-tuning using graphene
All-optical tuning of the resonance of an optical cavity is used to realise optical signal-processing including modulation, switching, and signal-routing. The tuning of optical resonance is dictated by the two primary effects induced by optical absorption: charge-carrier-generation and heat-generation. Since these two effects shift the resonance in opposite directions in a pure silicon-on-insulator (SOI) micro-ring resonator as well as in a graphene-on-SOI system, the efficiency and the dynamic range of all-optical resonance-tuning is limited. In this work, in a graphene-oxide-silicon waveguide system, we demonstrate an exceptional resonance-tuning-efficiency of 300 pm/mW (0.055 pi/mW), with a large dynamic range of 1.2 nm (0.22 pi) from linear resonance to optical bistability. The dynamics of the resonance-tuning indicates that the superior resonance-tuning is due to large linear-absorption-induced thermo-optic effect. Competing free-carrier dispersion is suppressed as a result of the large separation between graphene and the silicon core. This work reveals new ways to improve the performance of graphene-on-waveguide systems in all-optical cavity-tuning, low-frequency all-optical modulation, and switching
Tuning the plasmonic absorption of metal reflectors by zinc oxide nano particles: Application in thin film solar cells
Palanchoke U, Kurz H, Noriega R, et al. Tuning the plasmonic absorption of metal reflectors by zinc oxide nano particles: Application in thin film solar cells. Nano Energy. 2014;6:167-172.The short circuit current and conversion efficiency of silicon thin film solar cells can be increased by efficient light trapping. The short circuit current is maximized if the metal back contact of the solar cells efficiently scatters and diffracts the reflected light, while optical (plasmonic) losses in the back contact are minimized. The investigations show that the optical losses in the back contact are highest if nano features are present at the dielectric/metal interface. However, large back contact features with dimensions comparable to the optical wavelength efficiently scatter and diffract the reflected light. In this study the morphology of the back contact was controlled by inserting zinc oxide nano particles. The influence of the nano particles on the quantum efficiency, short circuit current and conversion efficiency is studied
Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies
Jovanov V, Palanchoke U, Magnus P, et al. Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies. Optics express. 2013;21 - S4(S4):A595-A606.The influence of realistic interface morphologies on light trapping in amorphous silicon thin-film solar cells with periodic surface textures is studied. Realistic interface morphologies are obtained by a 3D surface coverage algorithm using the substrate morphology and layer thicknesses as input parameters. Finite difference time domain optical simulations are used to determine the absorption in the individual layers of the thin-film solar cell. The influence of realistic interface morphologies on light trapping is determined by using solar cells structures with the same front and back contact morphologies as a reference. Finally the optimal surface textures are derived
Collection and conversion of light into electricity using rectenna technology
International audienc