439 research outputs found

    Identification of runs of homozygosity affecting female fertility and milk production traits in Finnish Ayrshire cattle

    Get PDF
    Inbreeding gives rise to continuous lengths of homozygous genotypes called runs of homozygosity (ROH) that occur when identical haplotypes are inherited from both parents. ROHs are enriched for deleterious recessive alleles and can therefore be linked to inbreeding depression, defined as decreased phenotypic performance of the animals. However, not all ROHs within a region are expected to have harmful effects on the trait of interest. We aimed to identify ROHs that unfavourably affect female fertility and milk production traits in the Finnish Ayrshire population. The estimated effect of ROHs with the highest statistical significance varied between parities from 9 to 17 days longer intervals from calving to first insemination, from 13 to 38 days longer intervals from first to last insemination and from 0.3 to 1.0 more insemination per conception. Similarly, for milk production traits ROHs were associated with a reduction of 208 kg for milk yield, 7 kg for protein yield and 16 kg for fat yield. We also found regions where ROHs displayed unfavourable effects across multiple traits. Our findings can be exploited for more efficient control of inbreeding depression, for example by minimizing the occurrence of unfavourable haplotypes as homozygous state in breeding programmes.yPeer reviewe

    Dominanssin vaikutus eläinten jalostusarvojen ennustamisessa

    Get PDF
    vokKirjasto Aj-kAbstrac

    Estimation of inbreeding depression on female fertility in the Finnish Ayrshire population

    Get PDF
    Single nucleotide polymorphism (SNP) data enable the estimation of inbreeding at the genome level. In this study, we estimated inbreeding levels for 19,075 Finnish Ayrshire cows genotyped with a low-density SNP panel (8K). The genotypes were imputed to 50K density, and after quality control, 39,144 SNPs remained for the analysis. Inbreeding coefficients were estimated for each animal based on the percentage of homozygous SNPs (F-PH), runs of homozygosity (F-ROH) and pedigree (F-PED). Phenotypic records were available for 13,712 animals including non-return rate (NRR), number of inseminations (AIS) and interval from first to last insemination (IFL) for heifers and up to three parities for cows, as well as interval from calving to first insemination (ICF) for cows. Average F-PED was 0.02, F-ROH 0.06 and F-PH 0.63. A correlation of 0.71 was found between F-PED and F-ROH, 0.66 between F-PED and F-PH and 0.94 between F-ROH and F-PH. Pedigree-based inbreeding coefficients did not show inbreeding depression in any of the traits. However, when F-ROH or F-PH was used as a covariate, significant inbreeding depression was observed; a 10% increase in F-ROH was associated with 5days longer IFL0 and IFL1, 2weeks longer IFL3 and 3days longer ICF2 compared to non-inbred cows.Peer reviewe

    Geenikartoitusmenetelmien kehitystyötä

    Get PDF

    Identification of copy number variations and candidate genes for reproduction traits in Finnish pig populations

    Get PDF
    Animal breeding programs can be improved by genetic markers associated with production and reproduction traits. Reproduction traits are important for economic success of pig production and therefore development of genetic tools for selection is of high interest to pig breeding. In this study our objective was to identify genomic regions as-sociated with fertility traits in two Finnish pig breeds using large scale SNP genotyping and genome wide association analysis and characterization of copy number variations (CNV). Since CNVs are structural variations of the genome they potentially have a large effect on gene expression and protein function. We analyzed 1265 genotyped boars for nine different reproduction traits and identified 46 CNV regions encompassing 13 genes. 11 of the CNV regions were shared between the breeds, 20 were unique to the Finnish Yorkshire and 15 to the Finnish Landrace. The ge-nome wide association (GWAS) analysis identified zero to five reproduction associated genomic regions per trait. Furthermore, we identified 23 genomic regions with 20 candidate genes associated with fertility traits using GWAS analysis. The identified CNV regions were compared against GWAS regions to detect candidate regions with an ef-fect on reproduction traits. This study reports candidate genes and genomic regions within two Finnish pig breeds for reproduction traits, which can be utilized in breeding programs.Peer reviewe

    Whole-genome association analysis of pork meat pH revealed three significant regions and several potential genes in Finnish Yorkshire pigs

    Get PDF
    Background: One of the most commonly used quality measurements of pork is pH measured 24 h after slaughter. The most probable mode of inheritance for this trait is oligogenic with several known major genes, such as PRKAG3. In this study, we used whole-genome SNP genotypes of over 700 AI boars; after a quality check, 42,385 SNPs remained for association analysis. All the boars were purebred Finnish Yorkshire. To account for relatedness of the animals, a pedigree-based relationship matrix was used in a mixed linear model to test the effect of SNPs on pH measured from loin. A bioinformatics analysis was performed to identify the most promising genes in the significant regions related to meat quality. Results: Genome-wide association study (GWAS) revealed three significant chromosomal regions: one on chromosome 3 (39.9 Mb-40.1 Mb) and two on chromosome 15 (58.5 Mb-60.5 Mb and 132 Mb-135 Mb including PRKAG3). A conditional analysis with a significant SNP in the PRKAG3 region, MARC0083357, as a covariate in the model retained the significant SNPs on chromosome 3. Even though linkage disequilibrium was relatively high over a long distance between MARC0083357 and other significant SNPs on chromosome 15, some SNPs retained their significance in the conditional analysis, even in the vicinity of PRKAG3. The significant regions harbored several genes, including two genes involved in cyclic AMP (cAMP) signaling: ADCY9 and CREBBP. Based on functional and transcription factor-gene networks, the most promising candidate genes for meat pH are ADCY9, CREBBP, TRAP1, NRG1, PRKAG3, VIL1, TNS1, and IGFBP5, and the key transcription factors related to these genes are HNF4A, PPARG, and Nkx2-5. Conclusions: Based on SNP association, pathway, and transcription factor analysis, we were able to identify several genes with potential to control muscle cell homeostasis and meat quality. The associated SNPs can be used in selection for better pork. We also showed that post-GWAS analysis reveals important information about the genes' potential role on meat quality. The gained information can be used in later functional studies.Peer reviewe
    corecore