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Interpretive Summary 1 

Metafounder approach for single-step genomic evaluations of Red Dairy cattle. By 2 

Kudinov et al. Change from the multi-step to the single-step genomic prediction approach in 3 

routine evaluations is complicated. In this study, we show the advantage of the metafounders 4 

approach in the single-step prediction of milk performance in dairy cattle. In addition, we 5 

also test the effect of markers selection on creating a metafounders relationship matrix.  6 
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ABSTRACT 19 

Single-step genomic BLUP (ssGBLUP) is a powerful approach for breeding value prediction 20 

in populations with a limited number of genotyped animals. However, conflicting genomic 21 

(G) and pedigree (𝐀22) relationship matrices complicate the implementation of ssGBLUP 22 

into practice. The metafounder (MF) approach is a recently proposed solution for this 23 

problem and has been successfully used on simulated and real multi-breed pig data. 24 

Advantages of the method are easily seen across breed evaluations, where pedigrees are 25 

traced to several pure breeds, which are thereafter used as MF. Application of the MF method 26 

to ruminants is complicated due to multi-breed pedigree structures and the inability to 27 

transmit existing unknown parent groups (UPG) to MF. In this study, we apply the MF 28 

approach for ssGBLUP evaluation of Finnish Red Dairy cattle treated as a single breed. 29 

Relationships among MF were accounted for by a (co)variance matrix (Γ) computed using 30 

estimated base population allele frequencies. The attained Γ was used to calculate a 31 

relationship matrix 𝐀22
𝚪  for the genotyped animals. We tested the influence of SNP selection 32 

on the Γ matrix by applying a minor allele frequency (MAF) threshold (𝚪MAF) where 33 

accepted markers had an MAF ≥ 0.05. Elements in the 𝚪MAF matrix were slightly lower than 34 

in the Γ matrix. Correlation between diagonal elements of the genomic and pedigree 35 

relationship matrices increased from 0.53 (𝐀22) to 0.76 (𝐀22
𝚪  and  𝐀22

𝚪MAF). Average diagonal 36 

elements of 𝐀22
𝚪  and 𝐀22

𝚪MAF  matrices increased to the same level as in the G matrix. ssGBLUP 37 

breeding values (GEBV) were solved using either the original 236 or redefined 8 UPG, or 8 38 

MF computed with or without the MAF threshold. For bulls, the GEBV validation test results 39 

for the 8 UPG and 8 MF gave the same adjusted R2  (0.31) and over-dispersion (0.73, 40 

measured by regression coefficient 𝑏1). No significant R2 increase was observed in cows. 41 

Thus, the MF greatly influenced the pedigree relationship matrices but not the GEBV. 42 
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Selection of SNPs according to MAF had a notable effect on the Γ matrix and made the A22 43 

and G matrices more similar. 44 

 45 

Key Words 46 

Genetic groups, single-step genomic BLUP, metafounders, base population. 47 

INTRODUCTION 48 

Single-step genomic BLUP (ssGBLUP) is an elegant approach for estimating 49 

genomic breeding values (GEBV) that uses pedigree (𝐀) and genomic (𝐆) relationship 50 

matrices (Aguilar et al., 2010; Christensen and Lund, 2010). The approach has two important 51 

theoretical assumptions concerning the 𝐀 and 𝐆 matrices: the same scale and equal base 52 

population (Christensen, 2012). These assumptions complicate the application of ssGBLUP 53 

in dairy cattle breeding. In order to meet the assumptions, several methods have been 54 

proposed that make 𝐆 to be like 𝐀. For example, base population allele frequencies (AF) are 55 

used (VanRaden, 2008), and elements of 𝐆 are scaled and centered to have on average the 56 

same diagonal and off-diagonal elements as in 𝐀 (Vitezica et al., 2011; Christensen et al., 57 

2012). In practice, base population AF are unknown and the 𝐆 matrix is often constructed 58 

using AF observed in the genotyped population.  59 

Commercial dairy cattle pedigree can seldom be traced to a genetically homogeneous base 60 

population because the pedigree often has a complicated breed structure with unknown parent 61 

information (VanRaden, 1992; Sponenberg and Bixby, 2007). To solve the problem of 62 

incomplete pedigree, Thompson (1979) and Quaas (1988) developed the concept of phantom 63 

parents or unknown parent groups (UPG), for animals with unknown parent(s). UPG are 64 

typically assigned according to selection pathways and share the same genetics allowing 65 
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more accurate estimation of genetic trend in traditional genetic evaluation (Theron et al., 66 

2002). In ssGBLUP, Misztal et al. (2013) observed bias in UPG solutions. The bias increased 67 

with an increase in the number of genotyped animals. 68 

The metafounder (MF) approach was proposed by Legarra et al. (2015) to achieve 69 

compatibility in the pedigree and genomic relationship matrices. The MF approach combines 70 

the idea of using AF equal to 0.5 for all markers when calculating the 𝐆 matrix (Christensen, 71 

2012) and assigning unknown parents to MF or pseudo-individuals with self-relationships in 72 

the 𝐀 matrix. MF are similar to UPG, but allow a related base population with non-zero 73 

inbreeding coefficients. The relationships within and between the MF are modeled by a 74 

gamma matrix (𝚪), which is used in forming the relationship matrix (𝐀𝚪). The 𝚪 matrix may 75 

be constructed using an estimated base or observed genotyped population AF (e.g. Legarra et 76 

al., 2015; Garcia-Bacciano et al., 2017). However, the 𝚪 matrix may be poorly estimated 77 

when certain AF are estimated inaccurately due to the low number of rare alleles. The large 78 

number of UPG increases chances that an UPG is associated with a low number of rare allele 79 

genotypes.  80 

Legarra et al. (2015) and Garcia-Bacciano et al. (2017) showed the advantage of the MF 81 

approach in GEBV estimation using simulated data. Xiang et al. (2017) used the MF method 82 

for ssGBLUP evaluation in the crossbreed performance in pigs. According to their results, the 83 

MF approach successfully combined two breeds in a GEBV evaluation. Pig evaluations 84 

clearly focus on the youngest generation and, thus, fewer UPG are needed than in dairy cattle 85 

(Arnold et al., 1992). MF approach studies have mostly focused on crossbred and admixture 86 

populations (Bradford et al., 2019; van Grevenhof et al., 2019) because the approach may 87 

help with implementing ssGBLUP for complicated pedigree populations such as in pigs and 88 

poultry. However, implementing the MF approach for dairy cattle may be challenging 89 
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because of the frequently large number of UPG. The few published studies have used 90 

simulated dairy cattle data to estimate the 𝚪 matrix and its influence on ssGBLUP (Garcia-91 

Bacciano et al., 2017; Bradford et al., 2019), but had only a few MF. 92 

We used the MF approach in the ssGBLUP evaluation of 305-d milk production in Finnish 93 

Red dairy cattle. We present two approaches to estimate the 𝚪 matrix, using different 94 

numbers of markers. We compared values in the two 𝚪 matrices. The effect of various 𝚪 95 

matrices is shown using model validation statistics from ssGBLUP evaluations having either 96 

UPG or MF. 97 

MATERIALS AND METHODS 98 

ssGBLUP models 99 

The joint relationship matrix of genotyped and non-genotyped animals in ssGBLUP is 100 

commonly denoted as H (Aguilar et al., 2010; Christensen and Lund, 2010). The 𝐇−1 matrix 101 

needed in the mixed model equations of ssGBLUP is 102 

𝐇−1 = 𝐀 −1 + (
𝟎 𝟎
𝟎 𝐆−1 − 𝐀22

−1 
), 103 

where 𝐀 is the full pedigree relationship matrix, 𝐆 is the genomic relationship matrix, and 104 

𝐀22 is a pedigree relationship matrix of the genotyped animals. 105 

Single step with UPG in A. Mean genetic levels of animals with missing parental information 106 

were modeled using pedigree-based UPG proposed by Quaas and Pollack (1981). In the UPG 107 

model, unknown parents are assumed to be unrelated and completely outbred. UPG effects in 108 

the model only account for possible non-zero expectations in the breeding values of parent 109 

groups. There are alternative ways to account for UPG in forming 𝐇−1. The standard way is 110 

to replace the original 𝐇−1 matrix with an augmented one, where the UPG are included as 111 
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“phantom parents” (Westell et al., 1988). Matilainen et al. (2018), following Misztal et al. 112 

(2013), formed the 𝐇−1 matrix without groups, and, thereafter, included the UPG via so-113 

called QP transformation (Quaas and Pollack, 1981) into the final augmented 𝐇−1. However, 114 

Masuda et al. (2019) recommended omitting the terms involving 𝐆−1 in the UPG coefficient 115 

part of the augmented 𝐇−1 matrix. In our UPG models, the genomic relationship matrix was 116 

constructed using VanRaden (2008) method 1 (𝐆𝐏𝐯𝐑𝟏) , where base population AF were used 117 

to center and scale the marker data. Base population AF were estimated with the GLS model 118 

(McPeek et al., 2004) using the Bpop v. 0.30 program (Strandén and Mäntysaari, 2019), 119 

which is based on the computational approach described in Strandén et al. (2017). The 120 

genomic information was assumed to account for 90% of the variation in breeding values, i.e. 121 

the polygenic proportion was 10%. This was attained using a modified 𝐆 matrix obtained by 122 

averaging original 𝐆 and 𝐀22 matrices with weights of 0.9 and 0.1, respectively. 123 

Single step with metafounders. In the MF approach, the 𝐇−1 matrix is replaced by a 124 

modified (𝐇𝚪)−1 matrix described by Legarra et al. (2015) and Christensen et al. (2015) as 125 

(𝐇𝚪)−1 = (𝐀𝚪)−1 + (
𝟎 𝟎
𝟎 𝐆𝑤

−1 − (𝐀22
𝚪 )−1), 126 

where 𝐆𝑤 = (1 − 𝑤)𝐆𝟎𝟓 + 𝑤𝐀22
𝚪 , w is the proportion of genetic variance not explained by 127 

the markers, 𝐆𝟎𝟓 = (𝐙101𝐙101
′ )

2

𝑚
, 𝐙101 is an n by m marker matrix with genotypes coded by 128 

{-1,0,1}, 𝑚 is the number of SNP markers, n is the number of genotyped animals, 𝐀𝚪 is 129 

pedigree relationship matrix formed with a 𝚪 matrix, and 𝐀22
𝚪  is a submatrix of 𝐀𝚪 for the 130 

genotyped animals. We used a 10% polygenic proportion, i.e. w = 0.1, as in Garcia-Baccino 131 

et al. (2017). The variance covariance structure of the MF can be estimated by 𝚪 = 8 𝐶𝑜𝑣(𝐏), 132 

as presented in the Appendix of Christensen et al. (2015), where 𝐏 is an m by r matrix of AF 133 

and r is the number of MF. 134 
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Test data and model validation 135 

We used Red Dairy Cattle (RDC) milk production data provided by Nordic Cattle Genetic 136 

Evaluations (NAV). The data sample was extracted from the NAV production evaluation 137 

database by including all cows from 426 Finnish herds with at least 10 genotyped cows. This 138 

gave 112,479 cows with first-lactation 305-d milk production records produced during 1988–139 

2018. The pedigree included 226,012 animals born in 1960–2016 consisting of 86% RDC, 140 

12% Holstein (HOL), 2% Finn cattle (FIN, an indigenous Finnish cattle population), and a 141 

total of 1% of other breeds (Red Holstein, Jersey, Brown Swiss etc.). There were 236 UPG 142 

which were based on selection path, birth year, and population of origin. These UPG 143 

definitions were the same as those used in the Nordic TD evaluations in November 2018 144 

(Lidauer et al., 2015) and were provided by NAV. 145 

Genotypes were available for 19,757 animals (3,571 bulls and 16,186 cows), which either 146 

had observations or were in the pedigree of the animals with observations. Bulls were 147 

genotyped using Illumina Bovine SNP50 Bead Chip (Illumina, San Diego, USA) and the 148 

cows using a lower-density EuroG 10k chip (http://www.eurogenomics.com/) that had been 149 

imputed to the 50K density by NAV. There were 46,914 markers from the 29 bovine 150 

autosomes available for the analysis.  151 

Cow and bull validation data sets were created by removing milk production records for 152 

either the last year or for four of the previous production years, respectively, as in Gao et al. 153 

(2018) and Mäntysaari et al. (2010). We included 101 and 3,551 genotyped test bulls and 154 

cows, respectively. Daughter yield deviations (DYD) and yield deviations (YD) were attained 155 

using the full data and an animal model by the MiX99 software (Strandén and Lidauer, 156 

1999), as in Gao et al. (2018). The calculated DYD and YD were used for bulls and cows, 157 

respectively, in validation regression models (𝐷)𝑌𝐷 =  𝑏0 + 𝑏1 ∗ 𝐺𝐸𝐵𝑉, with weights for 158 



8 
 

the DYD observations. The weight for DYD was 𝐸𝐷𝐶/(𝐸𝐷𝐶 + 𝜆), where 𝜆 is (4 – h2) / h2, 159 

h2 is heritability, and EDC is the bull’s effective daughter contributions 160 

(https://interbull.org/ib/cop_appendix4) in evaluation with the full data set. To attain adjusted 161 

validation reliability, we divided the model coefficient of determination (𝐑𝟐) by the average 162 

weight. The regression coefficient b1 for the bulls was multiplied by two because DYD only 163 

represents the sire effect. All the analyses used h2 of 0.44, which is a parameter derived from 164 

the NAV milk production test day model for 305-d milk yield. 165 

Unknown parents and metafounders 166 

Eight groups were defined according to the full pedigree structure and replaced the original 167 

236 UPG. We included six groups for RDC (birth years <1971, 1971–1980, 1981–1990, 168 

1991–2000, 2001–2010, 2011–2016), a HOL group, and a group for the other breeds. These 169 

eight groups were treated as UPG or MF. In the MF approach, the base population AF, used 170 

to calculate the 𝚪 matrix, were estimated using a GLS approach. The GLS model was 𝐦𝑖 =171 

𝐐𝛍𝑖 + 𝐞𝑖, where 𝐦𝑖 is an n by 1 vector of marker i genotypes, 𝐐 is an n by 8 matrix, the rows 172 

of which sum up to 1, and that assigns individuals to fractions of MF, 𝛍𝑖 is an 8 by 1 vector 173 

of group means, and 𝐞𝑖 ~ (𝟎, 𝐀22
∗ σ2) where 𝐀22

∗  was the pedigree relationship matrix for the 174 

genotyped animals and σ2 is the common variance. In allele frequency estimation, the 175 

common variance need not be known (e.g. Garcia-Baccino et al., 2017). Estimated base 176 

population AF for the MF are �̂�𝑖 =
1

2
�̂�𝑖 for each marker 𝑖 = 1, … , 𝑚. 177 

To estimate AF for the MF in the GLS model, the 𝐀22
∗  matrix was based on a truncated 178 

pedigree, where one parent generation at most was accepted to the genotyped animals. The 179 

pedigree truncation guaranteed that the young genotyped animals would contribute to the 180 

recent birth year MF and not to the old birth year MF. In addition, the truncation used more 181 

genomic information than the full pedigree because genotyped animals had less genotyped 182 
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ancestors but instead a young birth year MF. It can be proven that the GLS method will 183 

ignore genotype of an animal whose both parents are genotyped and the animal is not an 184 

ancestor to a genotyped animal. 185 

The eight columns of base population AF in the 𝐏 matrix were used to estimate the variance 186 

covariance structure of the eight MF or the 𝚪 matrix, 𝚪 = 8 𝐶𝑜𝑣(𝐏). The effect of minor 187 

allele frequencies (MAF) on the MF covariances were tested by creating two alternative 𝚪 188 

matrices. In the first scenario, the full 𝐏 matrix was used to calculate the 𝚪 matrix, denoted 189 

𝚪8. In the other scenario, denoted 𝚪8MAF, only those markers with MAF greater or equal to 190 

0.05 in all RDC cattle MF were included in the P matrix. The MAF requirement eliminated 191 

3,783 markers and left 43,131 markers that were used to calculate the 𝚪8MAF matrix. 192 

ssGBLUP computation  193 

All ssGBLUP calculations used the full pedigree with 226,012 animals and genomic 194 

relationship matrices (𝐆𝐏𝐯𝐑𝟏 or 𝐆𝟎𝟓) for the 19,757 animals. For the ssGBLUP with MF, the 195 

augmented additive relationship matrix of genotyped animals (𝐀22
𝚪 ) was calculated using the 196 

modified RelaX2 v. 1.83 program (Strandén and Vuori, 2006). The 197 

(𝐆𝐏𝐯𝐑𝟏
−1 − 𝐀22

−1) and (𝐆𝑤
−1 − (𝐀22

𝚪 )−1) matrices were calculated using the HGinv v. 0.87 198 

program (Strandén and Mäntysaari, 2018). The latest MiX99 v. 17.1107 (Strandén and 199 

Lidauer, 1999) was used to solve the GEBV using the four ssGBLUP models. Two of the 200 

evaluations were UPG models with either 236 UPG (ssGBLUP236UPG) or 8 UPG 201 

(ssGBLUP8UPG) in A. UPG were treated as random by adding the inverse of genetic variance 202 

to the diagonal of group equations in the mixed model equations. The other two ssGBLUP 203 

evaluations were MF models that had eight MF, and the pedigree relationship matrices were 204 

based on 𝚪8 (ssGBLUP𝚪8
) or 𝚪8MAF (ssGBLUP𝚪8MAF

). Genetic variance parameters from the 205 

model with unrelated founders were used to estimate corresponding parameters for the model 206 
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with MF. The variance of breeding values in base population descending from MF (𝜎𝑎,𝑘
2 ) in  207 

ssGBLUP𝚪8
 and ssGBLUP𝚪8MAF

 models were calculated using the scaling parameter 𝑘, i.e., 208 

𝜎𝑎,𝑘
2  = 𝜎𝑎

2/𝑘, where 𝑘 = (1 + tr(𝚪)/(2𝑛) − 𝟏′𝚪𝟏/𝑛2) and tr(𝚪) is the sum of diagonal 209 

elements of the 𝚪 matrix (Legarra et al. 2015). 210 

Comparisons 211 

Two traditional ssGBLUP evaluations were computed using different numbers of UPG, and 212 

two MF-based ssGBLUP evaluations were computed using different 𝚪 matrices and 213 

inbreeding coefficients. We present the two 𝚪 matrices such that the direct effect of the MAF 214 

threshold marker selection is seen in elements of the 𝚪 matrices. The MF approach is 215 

expected to give more similar pedigree and genomic relationship matrices than the traditional 216 

pedigree and genomic relationship matrices. In addition, the off-diagonal elements in the 217 

pedigree relationship matrix by the MF approach are expected to be higher than in the 218 

traditional pedigree relationship matrix. We assessed differences in the diagonal elements 219 

(related to the definition of inbreeding) and off-diagonals (related to relatedness) of 𝐀22
𝚪  , 220 

𝐀22, 𝐆𝟎𝟓, and 𝐆𝐏𝐯𝐑𝟏 by correlations and mean differences between these matrices. To 221 

identify differences in trends of diagonals to the pedigree and genomic matrices (that are 222 

related to breeding selection and changes in inbreeding), average diagonal elements of 𝐀22
𝚪  223 

𝐆𝟎𝟓 , 𝐆𝐏𝐯𝐑𝟏, and  𝐀22 were plotted by birth year.  224 

The two UPG definitions and two MF 𝚪 matrices gave four sets of ssGBLUP predictions. 225 

Validation tests used GEBV from the ssGBLUP evaluations separately from the groups of 226 

genotyped bulls and cows. Approximately 80% of bulls born in 1990 to 2014 were 227 

genotyped. Thus, differences between the ssGBLUP models may be largest in the genetic 228 

trends of the bulls. Averages and standard deviation of selected bull GEBVs by birth year 229 

were plotted for comparison purposes. The bulls selected for plotting had at least 10 230 
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daughters each. Average cow GEBVs by birth year were plotted using GEBVs from all cows 231 

to illustrate the genetic trend in the general population.  232 

RESULTS AND DISCUSSION 233 

Elements of 𝚪, 𝐀𝟐𝟐, 𝐆𝟎𝟓, 𝐆𝐏𝐯𝐑𝟏, and 𝐀𝟐𝟐
𝚪  234 

Table 1 has elements of the 𝚪8 and 𝚪8MAF matrices. Elements of the 𝚪8MAF matrix were 235 

slightly lower than corresponding elements in the 𝚪8 matrix. All diagonal elements in the 𝚪 236 

matrices were less than one, which corresponds to negative inbreeding of MF (Table 2) 237 

calculated as F = ɣ - 1, where ɣ is the relationship across gametes (diagonal element of 𝚪). 238 

All elements in the calculated 𝚪8 and 𝚪8MAF matrices were from 0.452 to 0.797. 239 

Because the MF were partially formed by breed, the greater than zero off-diagonal elements 240 

suggest shared genetics between breeds. Average mean relationship between the RDC and 241 

HOL metafounders was 0.564 and 0.473 in 𝚪8 and 𝚪8MAF, respectively. Off-diagonal 242 

elements of the 𝚪 matrix between Holstein and Jersey cattle in Legarra et al. (2015) was 0.48, 243 

which is close to the value we obtained in 𝚪8MAF. They calculated the 𝚪 matrix using 244 

published statistics in VanRaden et al. (2011), which included only SNP markers with MAF 245 

≥ 0.05 (Wiggans et al., 2009). The self-relationships in the HOL and RDC metafounders in 246 

our study were also comparable to 0.55 presented for the HOL and Jersey breeds in Legarra 247 

et al. (2015). In our study, an exception to this was the RDC < 1970 group, which had a 248 

diagonal value of 0.618 and 0.719 in  𝚪8MAF and 𝚪8, respectively. The larger diagonal value in 249 

the oldest RDC group may be due to changes in the Finnish RDC breeding program. Before 250 

1970, breeding in the RDC group was mostly limited to Ayrshire cattle with only a low 251 

number of imported animals. After 1970, importation began changing the population to more 252 

resemble a mixed Nordic RDC breed. Diagonal elements in the group of other breeds were 253 
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high in both of the 𝚪 matrices (0.740 and 0.797). This may be due to the influence of Finn 254 

Cattle having only a small number of animals, which may produce unreliable AF estimates.  255 

Table 3 shows correlations between (off-)diagonal elements of  𝐀22, 𝐆𝟎𝟓,  𝐆𝐏𝐯𝐑𝟏, 𝐀22
𝚪8 , and 256 

𝐀22
𝚪8MAF  matrices. Constructing 𝐀22 using 𝚪8 and 𝚪8MAF increased the correlation between the 257 

diagonal elements of 𝐆𝟎𝟓 and 𝐀22 from 0.66 to 0.76. The diagonal element correlation 258 

between elements of 𝐀22
𝚪8MAF  and 𝐀22 was higher (0.84) than between 𝐀22

𝚪8  and 𝐀22 (0.81). 259 

The correlation between diagonal elements of 𝐆𝐏𝐯𝐑𝟏 and 𝐀22 decreased from 0.53 to 0.33 and 260 

0.37 for 𝐀22
𝚪8MAF  and 𝐀22, respectively. Despite the high correlation of 0.99 between the 261 

diagonal elements of 𝐀22
𝚪8  and 𝐀22

𝚪8MAF , average diagonal elements by the birth year of an 262 

animal (Figure 1) were at a higher level for 𝐀22
𝚪8  than for 𝐀22

𝚪8MAFor 𝐆𝟎𝟓. Average diagonal 263 

elements for both augmented matrices (𝐀22
𝚪8  and 𝐀22

𝚪8MAF) were at the same level as 𝐆𝟎𝟓, i.e., 264 

from 1.30 to 1.38, while the average diagonals of 𝐀22 and 𝐆𝐏𝐯𝐑𝟏were in range from 0.98 to 265 

1.08. According to the summary statistics in Table 4, values for the off-diagonal elements of 266 

the pedigree relationship matrix 𝐀22 increased when using 𝚪 to make 𝐀22
𝚪 . Hence, all 267 

elements in the 𝐆𝟎𝟓, 𝐀22
𝚪8 , and 𝐀22

𝚪8MAF matrices were higher on average than those in the 𝐀22 268 

and  𝐆𝐏𝐯𝐑𝟏 matrices. Interestingly, both the diagonal and off-diagonal element mean, 269 

minimum, and maximum values of 𝐆𝟎𝟓 and 𝐀22
𝚪8MAF  agreed very well.  270 

Average inbreeding coefficients in the 𝐀22 and 𝐆𝟎𝟓 matrices were 0.02 and 0.31, 271 

respectively. This difference of 0.29 was close to the 0.272 reported in VanRaden et al. 272 

(2011) for HOL cattle (0.056 for 𝐀22 and 0.328 for 𝐆𝟎𝟓). The average inbreeding coefficient 273 

increased from 0.02 in 𝐀22 to 0.34 and 0.29 in 𝐀22
𝚪8  and 𝐀22

𝚪8MAF , respectively. Following 274 

Legarra et al. (2015), a diagonal element value less than one in the 𝚪 matrix means a negative 275 

individual inbreeding coefficient for MF. In all RDC MF, all elements of diag(𝚪)-1 ranged 276 
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from -0.38 to -0.43. We observed the highest self-relationships and corresponding MF 277 

inbreeding coefficients in the other breed group, which could be explained by the relatively 278 

closed small-scale selection program for FinnCattle. 279 

Use of the 𝚪 matrix to make the pedigree-based relationship matrix 𝐀22
𝚪8  or 𝐀22

𝚪8MAF  increased 280 

the correlation between elements of the pedigree and genomic relationship matrices when 281 

compared to the correlation between traditionally formed matrices (𝐆𝐏𝐯𝐑𝟏 and 𝐀22). 282 

Correlation between diagonal elements of 𝐀22
𝚪8  and 𝐆𝟎𝟓, as well as between 𝐀22

𝚪8MAF  and 𝐆𝟎𝟓, 283 

was 0.76, which is higher than the correlation of 0.53 between the diagonal elements of 284 

𝐆𝐏𝐯𝐑𝟏 and 𝐀22. Correlation between the off-diagonal elements of 𝐀22
𝚪8  (𝐀22

𝚪8MAF) and 𝐆𝟎𝟓was 285 

0.91, which is a bit higher than the same correlation (0.89) between 𝐆𝐏𝐯𝐑𝟏 and 𝐀22. Thus, 286 

using the 𝚪 matrix to form the relationship matrix lifted the diagonal elements of 𝐀22
𝚪  matrix 287 

to the same level as in the 𝐆𝟎𝟓 matrix (Figure 1).  288 

The average diagonal of the 𝐀22
𝚪8  matrix was at a higher level than the average diagonal of 289 

the 𝐆𝟎𝟓 matrix (Figure 1). Use of the MAF threshold to make 𝚪8MAF for 𝐀22
𝚪8MAF  gave lower 290 

average diagonal values than those in 𝐆𝟎𝟓. In constructing the 𝚪8MAF matrix, we deleted the 291 

low MAF markers to omit markers with highly uncertain or erroneous AF estimates. This, 292 

however, may lead to deleting nearby markers and accepting more markers from certain 293 

regions of the genome, particularly if a MAF threshold value higher than 5% is used. 294 

Consequently, AF from various MF may become more similar. For example, two breeds may 295 

differ due to more intense selection in one of the breeds, leading to the MAF criterion 296 

favoring unselected or highly polymorphic markers clustered in certain regions of the 297 

genome. Consequently, the 𝚪 matrix may show inflated covariances between the MF of these 298 

breeds. Linkage Disequilibrium (LD) criteria, in which markers are chosen to minimize LD, 299 

is an alternative approach to SNP pruning (Hill and Robertson, 1968). Patterns of LD are 300 
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widely used in marker data quality control and in the analysis of population history for 301 

various species (Porto-Neto et al., 2014; Makina et al., 2015; Cañas-Álvarez et al., 2016). 302 

Multiple studies have shown persistence in LD levels of various breeds and populations (de 303 

Roos, 2008; Xu et al., 2019), making LD a potential tool for marker selection.  304 

ssGBLUP estimation & validation results 305 

The correction factor 𝑘 used to calculate the variance of breeding values in base population 306 

descending from metafounders (𝜎𝑎,𝑘
2 ) in the GEBV calculations for ssGBLUP𝚪8

 and 307 

ssGBLUP𝚪8MAF
 was 0.72 and 0.77, respectively. Averages and standard deviations of bull 308 

GEBV by birth year are shown in Figures 2 and 3 and the average cow GEBV are shown in 309 

Figure 4. We centered the average GEBV trends of cows and bulls, so that the mean GEBV 310 

of animals born in 2009 equaled zero. Average bull GEBV in Figure 2 had a similar shape in 311 

all the models. The SD level in Figure 3 for bulls born in 2012–2014 was 20 kg (3%) higher 312 

in the MF models than in the UPG models. Average cow GEBV by birth year had a similar 313 

shape in all models (Figure 4). 314 

Validation test statistics for the approaches are shown in Table 5. Regression coefficients (b1) 315 

were generally slightly higher using MF than UPG. In the bull validation set, we obtained 316 

similar adjusted model reliability by ssGBLUP8UPG, ssGBLUP𝚪8
, and ssGBLUP𝚪8MAF

, and the 317 

gain was 0.04 in comparison to ssGBLUP236UPG. In the cow validation set, the validation 318 

reliabilities using MF were 0.01 higher than achieved by the UPG models. To exclude pre-319 

selection bias, we conducted the validation tests for bulls also using DYD computed from 320 

ssGBLUP236UPG. The adjusted model reliabilities did not change from those in Table 5. 321 

Genetic trends in GEBV from the UPG and MF models had a similar shape, showing no 322 

effect of the alternative group or founder definitions. We assumed that the inadequate 323 
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definition of groups would reduce the genetic trend estimate (Tsuruta et al., 2014) but this 324 

was not observed. Each of the bulls included in the yearly means in Figures 2 and 3 had at 325 

least 10 daughters and, therefore, may be less affected by MF. Perhaps ssGBLUP predictions 326 

where most of the sires are genotyped are robust against the definition of UPG or MF. Meyer 327 

and Tier (2018) reported a slightly higher estimated genetic trend with the MF approach 328 

compared to ssGBLUP without groups. However, females were the most often genotyped 329 

group in their data. Also, the SDs of the GEBV were fairly similar between all evaluations 330 

(Figure 3). The unstandardized genetic levels in the MF models were at a higher level 331 

compared to the UPG models. This difference did not affect the animal rankings by GEBV 332 

but indicate that the models defined base populations differently. We observed a high 333 

correlation of bull GEBVs between the MF model and the original 236 UPG model (0.972), 334 

while correlation of GEBVs between the MF model and the 8 UPG model was much lower 335 

(0.931; correlations not given in Tables). 336 

We used pedigree-based UPG in the ssGBLUP model via incomplete QP transformation 337 

(Quaas and Pollak, 1981), i.e. QP transformation for 𝐀−1 instead of 𝐇−1. In case of a multi-338 

breed structure, i.e. for the joint Nordic (Denmark, Finland, Sweden) RDC genetic 339 

evaluation, Matilainen et al. (2018) proposed to use QP transformation in 𝐇−1 (Misztal et al., 340 

2013). Bradford et al. (2019) observed that the incomplete QP transformation in ssGBLUP 341 

may be applied successfully by accounting for 𝐀−1 only, when a purebred population is 342 

analyzed. The MF approach used in this study could be a smooth way to implement the 343 

ssGBLUP model for the joint Nordic evaluation.  344 

Estimation of allele frequencies 345 

Defining the base population is the greatest challenge in the MF approach. We focused on 346 

two issues: the number of MF and the genetic change in time. Simply replacing current UPG 347 
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by MF is often impossible in genetic evaluations of large commercial populations, which 348 

have many UPG and animals with missing parents. We combined all UPG by breed and split 349 

the RDC-based UPG by decade to form eight MF. For the HOL and OTHER breeds, the 350 

limited number of animals and absence of phenotypic data were the key reasons for using 351 

only one MF per breed. By using multiple MF in RDC, we could account for a possible 352 

change in AF with time.  353 

Base population AF for the MF are needed to calculate the 𝚪 matrix. Garcia-Baccino et al. 354 

(2017) presented three approaches for estimating base population AF to be used for 355 

populations with crossbreed animals. All of these methods use genotypes and a pedigree 356 

relationship matrix or matrices. We used the genetics group model utilizing GLS. An 357 

alternative GLS approach allows differences between gene content variances across breeds 358 

and relies on a multi-breed model presented in Garcia-Cortes et al. (2006). All the pedigree-359 

based approaches only need the pedigree of ancestors to the genotyped animals, and the base 360 

population groups are defined by MF through pedigree information. However, the 361 

unbalanced distribution of genotyped animals to UPG or MF in the full pedigree affects all 362 

base population AF estimation methods that rely on the pedigree relationship matrix. 363 

In our study, a major part of the genotyped animals (75%) contributed to the oldest RDC 364 

group (RDC < 1971) when the full pedigree was used, although most of the genotyped 365 

animals (90.6%) were born after 2000. Thus, the contribution gained from genotypes of 366 

animals born in 2000–2016 to the recent year groups would be small and would depend on 367 

pedigree incompleteness. Consequently, the base population AF of the oldest RDC groups 368 

would be well estimated with, possibly, a small influence from young animal genotypes. To 369 

solve these issues in the base population AF estimation for the MF, we limited the length of 370 
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the pedigree of genotyped animals by only accepting ungenotyped animals with genotyped 371 

offspring.  372 

In our study, we calculated the base population AF of HOL and the other breeds group using 373 

the ancestor structure of genotyped RDC animals only. We tested the applicability of the 374 

chosen GLS approach by estimating an additional 𝚪 matrix (𝚪𝑅𝐷𝐶&𝐻𝑂𝐿, Table 6). The matrix 375 

was calculated using HOL AF (Koivula 2019, personal communication). We estimated these 376 

AF with HOL breed genotypes and the pedigree used in Koivula et al. (2018). The estimated 377 

𝚪RDC&HOL was compared with the presented 𝚪8 and 𝚪8MAF matrices (Table 1), which were 378 

only based on genotyped RDC animals. The closeness of the average diagonal values in the 379 

HOL MF of 𝚪RDC&HOL (0.615), 𝚪8 (0.661), and 𝚪8MAF (0.593) suggest that we were able to 380 

estimate the 𝚪 matrices fairly well without including the pure HOL population genotypes. In 381 

addition, the MAF-based marker selection gave the closest value to the HOL genotypes-382 

derived value. Using the truncated pedigree is one possible reason for the good estimation of 383 

HOL AF using RDC data. The aim of the pedigree truncation was to distribute available 384 

genotypes evenly across MF. Pruning the pedigree appeared to solve two important 385 

problems: unequal distribution of genotyped animals across MF and the mixture of AF breed 386 

groups. 387 

Off-diagonal elements of the 𝚪 matrix suggested fairly high similarity between all founder 388 

groups. We tested a 𝚪 matrix where the off-diagonal elements were half of those in the 389 

estimated 𝚪 matrix (results not shown). This half-reduced off-diagonal element 𝚪 matrix 390 

nearly gave the same GEBVs solutions, with a correlation of 0.998. Thus, for this data set, 391 

the MF-based ssGBLUP evaluation does not seem to be very sensitive to the off-diagonal 392 

element values in the 𝚪 matrix. Further work is needed to ascertain that this can be 393 

generalized to data sets with more genotyped animals and different population structure. 394 
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We observed differences in the 𝚪 matrix depending on the set of markers used to estimate the 395 

𝚪 matrix. When markers were required to have an MAF above a certain limit, values in the 𝚪 396 

matrix were lower than when all the markers were used. This is to be expected because the 𝚪 397 

matrix is estimated by the variance of AF and the MAF threshold reduced range of marker 398 

AF is used to calculate the variance. The case is similar to that in Chen et al. (2011) where 399 

increasing the MAF threshold in the marker selection decreased the values of (off-)diagonal 400 

elements in the genomic relationship matrix. The 𝚪 matrix is a function of the chosen MAF 401 

threshold as a consequence of the marker selection. We must therefore be careful when 402 

making interpretations of values in the estimated 𝚪 matrix. For example, the MAF threshold 403 

was applied to all of the RDC-based MF, but the set of selected markers will change if the 404 

HOL animals have genotypes.  405 

The pedigree pruning approach allowed estimation of base population AF for the breed 406 

groups despite all the genotyped animals being from the RDC breeding program. Still, it is 407 

impossible to model AF changes in base populations and MF before the first genotyped 408 

parent generations. One possibility is to assume that the AF changes have continuity and that 409 

the changes can also be extrapolated to early years before the genotyping began. Then the 410 

variance structures of 𝚪 in the observed base populations, i.e. parents of genotyped animals, 411 

could be extended to describe variances of unobservable MF using covariance functions 412 

(Kirkpatrick et al. 1994) with appropriate breeds and birth years.  413 

 414 

CONCLUSIONS 415 

We tested the metafounder approach on RDC data with a complicated multi-breed structure. 416 

The original 236 UPG were replaced by eight MF and tested in ssGBLUP evaluation. Use of 417 

MF increased correlation between elements of the pedigree and genomic relationship 418 
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matrices. Introduction of MAF-based marker selection before computing the 𝚪 matrix for the 419 

MF gave 𝐀22
𝚪8MAFan advantage over the original 𝐀22

𝚪8  in correlations with elements of the 420 

genomic relationship matrix. The reduction of UPG groups from 236 to eight reduced the 421 

inflation in the predictions and increased validation accuracy. The GEBVs from models with 422 

eight MF gave almost the same validation results and genetic trends as the eight UPG. Future 423 

development should focus on ways to increase the number of MF closer to the number of 424 

UPG.  425 
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Table 1. Estimated 𝚪8 (lower) and 𝚪8MAF (upper) triangle for the metafounders. The diagonal 615 

includes diagonals (i.e. self-relationships of metafounders) of 𝚪8 (in brackets) and 𝚪8MAF. 616 

 
RDC1 

<1970 

RDC1 

1971–

1980 

RDC1 

1981–

1990 

RDC1 

1991–

2000 

RDC1 

2001–

2010 

RDC1 

2011–

2016 

HOL1 OTHER1 

RDC1 

<1970 

0.618 

(0.719) 
0.555 0.563 0.563 0.566 0.566 0.471 0.453 

RDC1 

1971–

1980 

0.659 
0.569 

(0.670) 
0.566 0.561 0.564 0.562 0.473 0.454 

RDC1 

1981–

1990 

0.668 0.670 
0.609 

(0.710) 
0.588 0.589 0.585 0.473 0.452 

RDC1 

1991–

2000 

0.667 0.664 0.690 
0.587 

(0.689) 
0.585 0.583 0.473 0.455 

RDC1 

2001–

2010 

0.671 0.667 0.692 0.688 
0.598 

(0.701) 
0.597 0.474 0.452 

RDC1 

2011–

2016 

0.671 0.666 0.688 0.686 0.699 
0.603 

(0.705) 
0.474 0.453 

HOL1 0.563 0.564 0.564 0.564 0.566 0.566 
0.593 

(0.661) 
0.479 

OTHER1 0.544 0.544 0.544 0.545 0.544 0.545 0.552 
0.740 

(0.797) 

1Red dairy cattle (RDC) has been divided into metafounders by birth year, Holstein (HOL) 617 

cattle has one metafounder, and the other breeds (OTHER) have been combined into one 618 

metafounder. 619 

 620 

  621 
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Table 2. Inbreeding coefficients of metafounders calculated using 𝚪8 and 𝚪8MAF.  622 

Groups1 Γ8 Γ8MAF. 

RDC <1970 -0.28 -0.38 

RDC 1971–1980 -0.33 -0.43 

RDC 1981–1990 -0.29 -0.39 

RDC 1991–2000 -0.31 -0.41 

RDC 2001–2010 -0.29 -0.40 

RDC 2011–2016 -0.29 -0.39 

HOL -0.34 -0.40 

OTHER -0.34 -0.26 

1Red dairy cattle (RDC) has been divided into metafounders by birth year, Holstein (HOL) 623 

cattle has one metafounder, and the other breeds (OTHER) have been combined into one 624 

metafounder. 625 

  626 
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Table 3. Correlation of diagonal (upper triangle) and off-diagonal (lower triangle) elements 627 

of 𝐀22, 𝐆𝟎𝟓, 𝐆𝐏𝐯𝐑𝟏, 𝐀22
𝚪8 , and 𝐀22

𝚪8MAF. 628 

 𝐀22 𝐀22
𝚪8  𝐀22

𝚪8MAF  𝐆𝟎𝟓  𝐆𝐏𝐯𝐑𝟏 

𝐀22 1 0.81 0.84 0.66 0.53 

𝐀22
𝚪8  0.89 1 0.99 0.76 0.33 

𝐀22
𝚪8MAF  0.92 0.99 1 0.76 0.37 

𝐆𝟎𝟓 0.83 0.91 0.91 1 0.70 

 𝐆𝐏𝐯𝐑𝟏 0.89 0.86 0.88 0.88 1 

  629 



32 
 

Table 4. Mean, minimum (Min), and maximum (Max) element values of 𝐀22, 𝐆𝟎𝟓,  630 

𝐆𝐏𝐯𝐑𝟏, 𝐀22
𝚪8 , and 𝐀22

𝚪8MAF  from diagonal and off-diagonal. 631 

Elements Matrix Mean Min Max 

D
ia

g
o

n
al

 

𝐀22 
1.02 1.00 1.29 

𝐆𝟎𝟓 
1.31 1.24 1.48 

𝐆𝐏𝐯𝐑𝟏 
1.01 0.91 1.30 

𝐀22
𝚪8  1.35 1.27 1.51 

𝐀22
𝚪8MAF  1.31 1.23 1.50 

O
ff

-d
ia

g
o

n
al

 

𝐀22 0.07 0.06 0.81 

𝐆𝟎𝟓 0.63 0.47 1.29 

𝐆𝐏𝐯𝐑𝟏 0.05 -0.11 0.99 

𝐀22
𝚪8  0.72 0.54 1.22 

𝐀22
𝚪8MAF  0.62 0.45 1.16 

  632 
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Table 5. GEBV validation test regression coefficients and validation reliabilities of single-633 

step GBLUP GEBVs for genotyped bulls and cows.  634 

Validation 

set 
Model1 𝑏0 SE 𝑏1

2 SE R2 3 R𝐸𝐷𝐶
2 3 

B
u
ll

s 

ssGBLUP236UPG 70 16 0.61 0.06 0.23 0.27 

ssGBLUP8UPG 18 16 0.73 0.06 0.26 0.31 

ssGBLUP𝚪8
 -22 22 0.72 0.06 0.26 0.31 

ssGBLUP𝚪8MAF
 -27 23 0.73 0.06 0.26 0.31 

C
o
w

s 

ssGBLUP236UPG 118 9 0.89 0.03 0.16 0.36 

ssGBLUP8UPG 150 8 0.89 0.03 0.16 0.36 

ssGBLUP𝚪8
 12 13 0.90 0.03 0.16 0.37 

ssGBLUP𝚪8MAF
 -0.2 13 0.93 0.04 0.16 0.37 

1Model ssGBLUP236UPG (ssGBLUP8UPG) had 236 (8) unknown parent groups; ssGBLUP𝚪8
 had 8 635 

metafounders with the metafounder 𝚪 matrix calculated using all markers; ssGBLUP𝚪8MAF
 used 636 

markers with a minor allele frequency ≥ 0.05 in the metafounder 𝚪 matrix calculation. 637 

2 Regression coefficient 𝑏1 in equation 𝐷𝑌𝐷 =  𝑏0 + 𝑏1 ∗ 𝐺𝐸𝐵𝑉 for the bulls has been multiplied by 638 
2. 639 

3 R2 is the coefficient of determination from the validation regression, R𝐸𝐷𝐶
2  is adjusted by the average 640 

reliability of phenotypes in the validation group. 641 

  642 
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 643 

Figure 1. Average diagonal elements of 𝐀22 (black cross), 𝐆𝐏𝐯𝐑𝟏(red cross), 𝐆𝟎𝟓 (green 644 

circles), 𝐀22
𝚪8  (orange circles), and 𝐀22

𝚪8MAF (blue circles) by the birth year of an animal. The 645 

left side of the y-axis has a scale for 𝐆𝟎𝟓, 𝐀22
𝚪8  and 𝐀22

𝚪8MAF  and the right side has a scale for 646 

𝐀22 and 𝐆𝐏𝐯𝐑𝟏.  647 



35 
 

 648 

Figure 2. Average genomic breeding value of bulls by birth year in 305-d milk yield (kg). 649 

Each bulls had at least 10 daughters. The lines above each other are from the unknown parent 650 

group models ssGBLUP236UPG (black square) and ssGBLUP8UPG, (green triangle) and from the 651 

metafounders models ssGBLUP𝚪8
 (blue diamond) and ssGBLUP𝚪8MAF

 (red cross). 652 

  653 
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 654 

Figure 3. Standard deviation of bull genomic breeding values by birth year in 305-d milk 655 

yield, kg. Each bull had at least 10 daughters. Trends are from the unknown parent group 656 

models ssGBLUP236UPG (black square) and ssGBLUP8UPG, (green triangle) and from the 657 

metafounders models ssGBLUP𝚪8
 (blue diamond) and ssGBLUP𝚪8MAF

 (red cross). 658 

  659 
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 660 

Figure 4. Average genomic breeding value of cows by birth year in 305-d milk yield (kg). 661 

The lines above each other are from the unknown parent group models ssGBLUP236UPG 662 

(black square) and ssGBLUP8UPG, (green triangle) and from the metafounders models 663 

ssGBLUP𝚪8
 (blue diamond) and ssGBLUP𝚪8MAF

 (red cross). 664 

 665 

  666 
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Table 6. Gamma matrix created using base population allele frequencies calculated from Red 667 

Dairy Cattle (RDC) and Holstein (HOL) cattle genotypes. 668 

 
RDC1 

<1970 

RDC1 

1971–

1980 

RDC1 

1981–

1990 

RDC1 

1991–

2000 

RDC1 

2001–

2010 

RDC1 

2011–

2016 

OTHER1 
HOL1 

<1970 

HOL1 

1970–

1980 

HOL1 

1981–

1990 

HOL1 

1991–

2000 

HOL1 

2001–

2010 

HOL1 

2011–

2016 

RDC1 

<1970 
0.825 0.613 0.602 0.604 0.604 0.603 0.536 0.521 0.533 0.524 0.516 0.515 0.512 

RDC1 

1971–

1980 

 0.638 0.629 0.629 0.627 0.622 0.539 0.521 0.539 0.526 0.516 0.515 0.512 

RDC1 

1981–

1990 

  0.665 0.665 0.657 0.648 0.543 0.520 0.538 0.525 0.515 0.514 0.512 

RDC1 

1991–

2000 

   0.670 0.664 0.654 0.543 0.520 0.538 0.525 0.516 0.515 0.512 

RDC1 

2001–

2010 

    0.676 0.668 0.542 0.520 0.538 0.525 0.515 0.515 0.512 

RDC1 

2011–

2016 

     0.666 0.547 0.521 0.539 0.526 0.517 0.516 0.514 

OTHER1       0.813 0.511 0.525 0.518 0.509 0.507 0.503 

HOL1 

<1970 
       0.581 0.559 0.579 0.586 0.587 0.589 

HOL1 

1970–

1980 

        0.574 0.567 0.562 0.561 0.560 

HOL1 

1981–

1990 

         0.595 0.594 0.595 0.598 

HOL1 

1991–

2000 

          0.613 0.615 0.621 

HOL1 

2001–

2010 

           0.628 0.638 

HOL1 

2011–

2016 

            0.690 

1RDC and HOL cattle have been divided into metafounders by birth year, while the other 669 

breeds (OTHER) have been combined into one metafounder.  670 

 671 


