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Summary — Power and parameter estimation of segregation analysis was investigated for
independent nucleus family data on a quantitative trait generated under a finite locus
model and under a mixed model. For the finite locus model, gene effects at ten loci were
generated from a geometric series. Additionally, linkage between a major locus and other
loci was considered. Two different methods of segregation analysis were compared: a mixed
model and a finite polygenic mixed model. Both statistical methods gave similar power to
detect a major gene and estimates of parameters. An exception was a situation where two
major loci had an equal effect on phenotype: the mixed model had a higher power than the
finite polygenic mixed model, but estimates of the parameters from the mixed model were
more biased than estimates from the finite polygenic mixed model. Segregation analysis
was more powerful in detecting a major gene when data were generated under the finite
locus model than under the mixed model. When a major gene was linked to another gene,
a major gene was more difficult to detect than without such linkage. Segregation of two
major genes created biased estimates. Bias increased with linkage when parents were not
a random sample from a population in linkage equilibrium.

parameter estimation / power / major gene / segregation analysis

Résumé — Puissance et estimation des paramétres dans ’analyse de ségrégation com-
plexe avec un modele & nombre fini de locus. La puissance de l’analyse de ségrégation et
l’estimation des paramétres ont été étudiées sur des familles nucléaires indépendantes pour
un caractére quantitatif déterminé soit par un nombre fini de locus soit selon un modéle
d’hérédité mizte, itmpliquant un géne majeur et un résidu polygénique infinitésimal. Dans
le modéle & nombre fini de locus, le nombre de locus supposé était de dix et leurs effets sui-
vaient une loi de distribution géométrique. En outre, la possibilité de liaison génétique entre
un locus majeur et d’autres locus était envisagée. Deur méthodes d’analyse de ségrégation
ont été comparées, utilisant soit un modéle d’hérédité mixte, soit un modéle d’hérédité avec
un nombre fini de locus. Les deuz méthodes statistiques présentaient des puissances simi-
laires pour détecter un géne majeur et estimer les parameétres correspondants. A l’exception
toutefois d’une situation avec deux locus majeurs ayant le méme effet sur le phénotype.
Le modéle a hérédité mizte avait alors une puissance supérieure a celle du modéle a nom-
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bre fini de locus, mais les estimées des parameétres ¢ partir du modéle mizte étaient plus
biaisées que celles du modéle a nombre fini de locus. L’analyse de ségrégation était plus
puissante pour détecter un géne majeur dans le cas d’un caractére déterminé par un nom-
bre fini de locus que dans une situation d’hérédité mizte. Un géne majeur lié ¢ un autre
géne était plus difficile a détecter qu’en l'absence de liaison génétique. La ségrégation de
deux génes majeurs créait des biais d’estimation. Les biais étaient encore accrus en cas
de liaison génétique quand les parents n’étaient pas tirés d’une population en équilibre
gamétique pour les deux locus majeurs.

estimation de parameétre / puissance / géne majeur / analyse de ségrégation

INTRODUCTION

Statistical methods used to determine the mode of inheritance of a quantitative
trait in detection of major genes rely on phenotypic information. In addition,
methods can utilize information on genetic markers, which are now numerous. In
both cases, the most common statistical methods to detect a major gene are based
on maximum likelihood theory. Maximum-likelihood-based complex segregation
analysis was introduced by Elston and Stewart (1971) and Morton and MacLean
(1974). Complex segregation analysis combines three factors into a mixed model for
analysis of phenotypes for a quantitative trait: a gene which explains a detectable
part of genetic variance (major gene); residual polygenic variance, for which
individual gene effects are not of direct interest or detectable; and environment.
Recently a finite polygenic mixed model, which explains the polygenic part of
inheritance by a finite number of loci, was proposed by Fernando et al (1994) as an
alternative formulation for the mixed model. To make the finite polygenic mixed
model computationally feasible it is assumed that loci which explain the polygenic
part of inheritance are unlinked, biallelic, codominant, and have equal gene effects
and equal frequencies of favourable alleles (0.5) across loci (Fernando et al, 1994).

Power of segregation analysis of independent nucleus family data (full-sib fami-
lies) with the mixed model was investigated by MacLean et al (1975) and Borecki
et al (1994) and for half-sib data by Le Roy et al (1989) and Knott et al (1991).
In all cases, data were simulated according to the mixed model of inheritance. The
general conclusion from these studies was that the best chance to detect a major
gene is if it is dominant with moderate to low frequency in the population. By
increasing data size (number of families and size of the families), major genes with
smaller effects can be detected.

Many aspects that might affect robustness of segregation analysis with the mixed
model have been studied also (MacLean et al, 1975; Go et al 1978; Demenais
et al, 1986). The main concern has been false detection of a major gene with
skewed data. To overcome this problem, power transformation of the data was
proposed (MacLean et al, 1976). The optimal solution for skewed data is to make
the transformation simultaneously with estimation of other parameters (MacLean
et al, 1984). Removing skewness may, however, lead to reduced power to detect a
major gene (Demenais et al, 1986).
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Other common assumptions in segregation analysis include homogeneous vari-
ance within major genotypes, independence between the major gene and polygenic
effects, no genotype by environmental correlation, and no correlation between en-
vironment of parent and offspring (MacLean et al, 1975).

One basic assumption of segregation analysis, which has received less attention, is
normality of the residual distribution (polygenic + environmental) within a major
genotype. This assumption is met if the polygenic part is controlled by infinite
number of genes that each have only a small effect on phenotype, ie, the infinitesimal
model (Bulmer, 1980), and if the environmental factor is normally distributed.
However, the infinitesimal model might not be the best model for the distribution
of gene effects. A model where few genes with a large effect and several genes
with small effects control a quantitative trait may be closer to the real nature of
the distribution of gene effects. Evidence from Drosophila melanogaster supports
this hypothesis (Shrimpton and Robertson, 1988; Mackay et al, 1992). Such a
distribution of gene effects can be approximated by a geometric series (Lande and
Thompson, 1990).

If gene effects follow a geometric series, the distribution within major genotype
may not be normal, as with the infinitesimal model. This violates the assumption
of a normally distributed polygenic part of the mixed model commonly used in
segregation analysis. Two or more loci with large effects can also lie in a cluster on
a chromosome, which would link the major gene to other genes and thus violate
the assumption of independent segregation of a major gene and polygenes.

The objective of this paper was to study the effect of violation of the two
assumptions of the underlying model in segregation analysis, namely a skewed
polygenic distribution and linkage between a major gene and polygenes, on the
power of detecting a major gene and on parameter estimation. Behavior of the
mixed model of segregation analysis (Morton and MacLean, 1974) was compared
to the finite polygenic mixed model (Fernando et al, 1994). The methods were
compared under an independent nucleus family data structure.

MATERIALS AND METHODS

Balanced data on a quantitative trait were simulated for 25 independent full-
sib families, with a sire, dam, and ten offspring. All parents were assumed to
be unrelated and were generated from a population under Hardy—-Weinberg and
linkage equilibria. Genotypes of parents were generated under a ten-locus model
(finite locus model) or under a mixed model (from now on this will be called the
mixed generating model, whenever necessary, to distinguish between models used
for generating and for analyzing the data).

Under the finite locus model, the gene with largest effect had a substitution effect
of 1.0 (the difference between two homozygotes is twice the substitution effect) and
the gene with the second largest effect had a substitution effect of 0.25, 0.5 or 1.0.
Gene effects of the eight other loci followed the geometric series 0.25, 0.125, 0.0625,
where one locus had an effect of 0.25, three loci an effect of 0.125 and four loci an
effect of 0.0625. Gene frequencies were 0.5 for all loci except for the major locus, for
which frequency of the dominant allele was either 0.1, 0.5, or 0.9. Two alleles per
locus were simulated. The three loci with largest effect were completely dominant
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and other loci were additive. Genotypes of progeny were generated using either
independent segregation of loci or the two loci with the largest effect were linked
with a recombination rate of 0.1. In the case of linkage, linkage phase of the parents
was either random or all parents were double heterozygotes for the two linked loci
(favourable alleles on same chromosome).

For every finite locus scenario, corresponding genotypes were also generated
with a mixed model. Under the mixed-generating model, a major gene with a
substitution effect of 1.0 was simulated, along with a polygenic part, which was
simulated from a normal distribution with 0 mean and genetic variance equal to
the total genetic variance (additive + dominance) of the other nine loci in the
corresponding finite locus model. The polygenic effect of progeny was generated
from a normal distribution with mean equal to the average of polygenic effects of
the parents and variance equal to half of the polygenic variance.

Phenotypes were generated for both the finite locus and the mixed-generating
model by adding an environmental effect to the genotypic effects. Environmental
effects were simulated from a normal distribution with mean 0 and variance
corresponding to one minus the broad sense heritability (H?, total genetic variance
over phenotypic variance), which was equal to 0.4. A summary of the genetic
scenarios that were simulated is given in table 1.

Table I. Parameters used for simulating data.

Gene effects in all loci

Locus Set 1 Set 2 Set 3
AA Aa aa AA Aa aa AA Aa aa
1 1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 1.0 -1.0
2 0.25 0.25 —0.25 0.5 0.5 -05 1.0 1.0 -1.0
3 0.25 0.25 —0.25 0.25 0.25 —-0.25 0.25 0.25 —-0.25
45,6 0.125 0.0 -0.125 0.125 0.0 -—0.125 0.125 0.0 —-0.125
7.8,9,10 0.0626 0.0 —0.0625 0.0625 0.0 —0.0625 0.0625 0.0 —0.0625
Variances
oo 2P — g2¢
Set 1 Set 2 Set 3

pd =0.1 0.6156 0.1250-1.1109 0.2656-1.3218 0.8281-2.1656

p =05 0.7500  0.1250-1.3125 0.2656-1.5234 0.8281-2.3672

p =09 0.0396  0.1250-0.2469 0.2656-0.4578 0.8281-1.3016

& Variance of the major gene (locus 1). > Total genetic variance of the polygenic part of
inheritance including additive and dominance variances (loci 2 to 10). Loci 2 and 3 where
completely dominant, the rest were additive. © Environmental variance. © The frequency
of the dominant allele at the major locus (locus 1). Frequency of alleles at all other loci
equal to 0.5.
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Simulated data sets were analyzed by two computer packages. The Pedigree
Analysis Package (PAP Rev 4.02, Hasstedt, 1982, 1994) was used to compute the
likelihood of the mixed model and SALP (segregation and linkage analysis for pedi-
grees, Stricker et al, 1994) to compute the likelihood of the finite polygenic mixed
model. Only one major locus was fitted in SALP. Mendelian transmission proba-
bilities, equal variances within genotypes and no power transformation were used
in PAP. Downbhill simplex method is used for maximization in SALP and Gemini
(Lalouel, 1979) in PAP. Because Gemini does not allow maximization at boundaries
of the parameter space (gene frequency and heritability have boundaries at 0 and
1) the program occasionally stopped. In those cases, the parameter that reached
the boundary was fixed close to the boundary (0.0001 or 0.9999 for gene frequency
and 0.0001 for heritability) and other parameters were maximized conditional on
that. Because the major gene was simulated with complete dominance, psa was
fixed to be equal to p4, in all maximum likelihood analyses. Input values for sim-
ulation were used as starting values for the maximization process. Likelihood ratio
test statistic was calculated by comparing a general model to a model with equal
means (fAA = faa = flaa)-

Because SALP and PAP use different parameterization of effects, parameters
were converted to two genotypic means (paa and figq), gene frequency of the
dominant allele (p), and polygenic (¢2) and environmental (02) variances. Instead
of polygenic and environmental variances, PAP estimates herltablhty (h?) and
the phenotypic standard deviation conditional on major genotype; for the finite
polygenic mixed model SALP estimates a scaling factor (= /[02/(q(1 — q)k)],
where ¢ is the allele frequency at polygenic loci, which was fixed at 0.5, and k
is twice the number of polygenic loci, which was fixed at ten), and phenotypic
variance.

Each simulated major gene scenario (table I) was replicated 50 times. Empirical
power of the mixed model of analysis was measured as the proportion of cases in
which the likelihood ratio test statistic exceeded the X? distribution with 2 df at
5% significance level.

Because the likelihood test statistic is only asymptotically distributed according
to the X2 distribution (Wilks, 1938), 200 replicates of six data sets without a major
gene were generated based on the infinitesimal model and the proportion of test
statistics which supported the major gene hypothesis was calculated for both the
mixed model and the finite polygenic mixed model. Polygenic and environmental
variances of the examples corresponded to sets 2 and 3 (table I) without a major
gene. The proportion of false detection is expected to be 5% when a 5% type I error
level is used.

Empirical power of the mixed model was measured as the proportion of cases in
which the major gene hypothesis was accepted. Under the mixed-generating model,
the power corresponds to the probability of detecting the simulated major gene.
This is not the case when data are simulated under the finite locus model; instead
of detecting the first locus as a major gene, the power indicates the probability of
detecting any of the simulated loci as a major gene.
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RESULTS

Power of the likelihood ratio test

The proportions of false detection of major gene when no major gene effect was
generated, but the likelihood ratio between the mixed model and the polygenic
model was compared to the X? table value with two degrees of freedom at 5%
significance level, were 4, 3 and 6% for set 2 distribution of gene effects (table I)
and 4, 3 and 5% for set 3 distribution of gene effects with gene frequencies of 0.1,
0.5, and 0.9, respectively. Using the finite polygenic mixed model and its sub-model
the corresponding values were 4, 3, 4 and 4, 4, 3%, for set 2 and set 3, respectively.
Thus the true power of detecting a major gene for the data structure used here can
be somewhat higher for both methods than reported in table II.

When data were generated under the mixed model, the highest power was
achieved when frequency of the dominant allele was low and the lowest power
with a rare recessive allele (table II). This pattern was consistent across different
proportions of genetic variance explained by polygenes (sets 1, 2 and 3). Under the
finite locus model, the pattern changed when two major loci had an equal effect
on the trait (table II, set 3); the highest power for the mixed model was achieved
when one of the genes was almost fixed in the population, however, the difference
between cases of gene frequency of 0.5 and 0.9 for the finite polygenic mixed model
was small (without linkage).

The effect of the proportion of total genetic variance that a major gene ex-
plained on the power was very clear under the mixed-generating model; the power
was higher if the major gene explained a large proportion of total genetic vari-
ance, when compared within the same gene frequency (table II, sets 1, 2 and 3).
The same pattern was true when data were generated under the finite locus model:

Table II. Power of the mixed model and the finite polygenic mixed model to detect a
major gene based on 50 replicates.

7°  Data Set 12 Set 2 Set 3
generating
model NL (%) NL (%) L (%) LH (%) NL (%) L (%) LH (%)
0.1 Finite 90 / 88° 62 /62 62/ 62 14/8 10/6
Mixed 82/8 68/ 66 18 / 18
0.5 Finite 64/64 58/56 40/38 24/20 44/42 36/32 20/ 14
Mixed 58 /58 46 / 44 16 / 14
0.9 Finite 50/52 36/34 34/34 66 /40 66 / 40
Mixed 54 /52 2222 4/4

Under the finite locus model data were generated without linkage (NL), with linkage (L),
and with linkage when all parents were double heterozygotes for two loci with largest
effects (LH). # Distribution of gene effects for finite locus model, see table I. b Frequency
of the dominant allele at the major locus. ¢ The first number indicates power of the mixed
model and the second number indicates power of the finite polygenic mixed model.
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power reduced when the effect of the second largest locus increased (table II, sets 1,
2 and 3). An exception was, again, a case when two major loci had an equal effect
on the trait and frequencies of favourable alleles at the major loci were 0.5 and 0.9
(table II, set 3, p = 0.9). In most cases, the higher power of detecting a major gene
was achieved when data were generated under the finite locus model than under
the mixed model.

Violation of the assumption of independent segregation of the major gene and
other genes had a negative effect on the power of the mixed model as well as on
the power of the finite polygenic mixed model (table II). Even larger reductions
in the power were observed when all parents were double heterozygotes for the
two linked loci with largest effects (table IT). In this case, not only the assumption
of independent segregation of a major gene and polygenes was violated but also
the assumption of Hardy—Weinberg equilibrium in the parental population; true
probabilities for parents to be homozygotes were zero, not p? and (1 — p)?, as
was assumed in the analysis. The reduction in the power due to violation of
Hardy-Weinberg equilibrium was confirmed by a simulation where all parents were
heterozygous for the major locus (a finite locus model similar to set 2 with p = 0.5,
no linkage). In this case, the power of the mixed model was 28% compared to 58%
when the parent population was in Hardy—Weinberg equilibrium (table II, set 2,
p = 0.5).

Parameter estimation

Mean estimates of parameters, with their empirical standard deviations based on
50 replicates, and true values are given in tables III and IV. The expected variance
components for polygenes given in table III (results for the finite locus model) do
not include dominance variance of the second and the third largest loci (smaller loci
were additive), because the statistical methods studied here did not take polygenic
dominance variance into account. As a result, dominance variance may be partly
confounded with estimates of additive genetic variance and partly with estimates
of residual variance.

For the first distribution of gene effects (set 1) and the finite locus model, both
methods gave similar estimates (table IIT). In most cases, estimates agreed well
with true values, although some discrepancies were found for variance components.
The standard deviation of the estimate of the genotypic mean depended on the
estimated gene frequency and was larger for low frequencies.

Going from the set 1 distribution of gene effects to set 2, with a larger second
locus effect, variation of estimates increased (table ITI). More bias was also observed.
For example, when gene frequency was 0.9, the difference between genotypes
was underestimated (by about 0.25) by both methods and gene frequency was
underestimated at 0.8.

When two major genes with equal effect were simulated, parameter estimates
were biased (table III, set 3). The difference between homozygotes was inflated
by as much as 25% in the case of equal gene frequencies (0.5). Gene frequency
estimates were also biased; with a simulated gene frequency of 0.1, the average esti-
mate was around 0.15. Estimates were even more biased when the first major gene
had a frequency 0.9. In that case, the mixed model gave estimates closer to 0.5 than
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0.9 and the finite polygenic mixed model between 0.5 and 0.9. Overestimation of
differences between genotypes led to underestimation of polygenic variance, because
a larger proportion of total genetic variance was attributed to variance between
genotypes.

With linkage between the two loci with largest effect, a significant inflation was
observed in all estimates when the linked genes were of equal size (table III, set 3).
When all base population parents were double heterozygotes for the two linked loci
of large effect, parameter estimates were highly biased (table III). Estimates of the
difference between the two genotypes was 0.8 units higher than the true difference
between the genotypes in one locus when the two loci with the largest effect on
phenotype had equal effects. Also in this case, gene frequency was higher than the
expected 0.5 and the estimate of additive genetic variance was almost zero. Bias
in estimates of the parameters was larger for the mixed model than for the finite
polygenic mixed model.

More consistent estimates over the different genetic scenarios were achieved when
data were generated under the mixed model than under the finite locus model
(table IV). No important differences were found between the mixed model and the
finite polygenic mixed model. The variance of estimates of all parameters increased
when the proportion of genetic variance explained by the major gene decreased
(going from set 1 to set 3), but average values of estimates were still close to
expected values.

DISCUSSION AND CONCLUSIONS

The purpose of this paper was to study the sensitivity of complex segregation
analysis to violation of some of the assumptions of the underlying model, in
particular a normal distribution of polygenic effects and no linkage between a
major gene and polygenes. Similarity in the power of both methods of segregation
analysis (the mixed model and the finite polygenic mixed model) was observed,
except when data were generated based on the finite locus model with two major
genes. Similar results for both methods can be expected because the computer
package (SALP), which maximized the finite polygenic mixed model used equal
allele frequencies (0.5) and additive gene action for all genes except the major gene,
which created an approximate normal genetic distribution within major genotypes.
The finite polygenic mixed model with one major locus is a closer approximation
of a mixed model (Fernando et al, 1994) than an oligogenic model, which explains
inheritance by a few independent loci and estimates the effect of the each locus
separately (Elston and Stewart, 1971). Performance of the oligogenic model or a
finite polygenic mixed model with several major loci was not studied, but might
have been better than the methods studied here when data are generated from a
finite number of loci.

Type I error rate was checked only for the mixed generation model and was
around (or below) the expected 5%. The true type I error rate under the finite
locus model is unknown. Thus, the power given in table II under the finite locus
model is the probability of rejecting a pure polygenic model when the likelihood
ratio test statistic is compared to the X? table value with two degrees of freedom.
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The nature of polygenic variance (ie, the finite locus model versus the mixed-
generating model) had a significant impact on power of major gene detection. In the
mixed model, the polygenic component inherited by progeny has an expected value
equal to the average of the polygenic values of the parents (or midparent breeding
value), which is not valid if any of the genes contributing to the polygenic component
are dominant. The discrepancy of progeny from the expected midparent polygenic
value increases with an increase in the relative magnitude of dominant loci over
all polygenic loci. In addition, with dominance, the genetic variance of offspring
conditional on parental polygenotype is not equal to half of the additive genetic
variance but also contains dominance variance, which is relatively large compared
with additive variance when a large recessive gene with low frequency segregates in
the population. These discrepancies from assumptions of the mixed model should
have a negative impact on its power in cases where data were simulated under a
finite locus model compared with a mixed generating model. However, no negative
effect on the power was observed. Instead, in most cases the power was higher
under the finite locus model than under the mixed-generating model (table II). In
the case of two loci with major effect (table II, set 3) and to a lesser extent with
sets 1 and 2, the methods had a chance to detect either of the major genes, which
may explain the higher power under the finite locus model. In contrast, when the
same situation was generated using the mixed model, a major gene explained only
a small proportion of the total genetic variance, the detection of the major gene
was difficult. Which of the genes was detected as a major gene under the finite
locus model was not investigated, but based on intermediate estimates for gene
frequency, it seems that in some families the gene from the first locus was detected
as a major gene, and in other families the gene from the second locus (or other loci)
was detected.

Linkage between a major gene and polygenes reduced power but did not have
a large impact on parameter estimates if the linked genes were not of equal size
and if the parents were a random sample from a population in linkage equilib-
rium. Furthermore, based on one simulation example, violation of the assumption
of Hardy—Weinberg equilibrium in the parental generation reduced power substan-
tially. Therefore, it is recommended to test a model that assumes Hardy—Weinberg
equilibrium against a model with free genotypic frequencies for the parental gener-
ation.

The results given here are restricted to data from independent nucleus families.
Based on results by Fernando et al (1994), the finite polygenic mixed model
is a closer approximation of the mixed model under an example data set with
three generations than PAP if data are generated with a mixed model. How these
methods perform under the finite locus model when information from more than
two generations are available or when nucleus families are not independent was not
studied. Thus, the natural area for future studies is the performance of methods
under multigenerational data when data are generated under the finite locus model.

In conclusion, both segregation analysis methods studied here gave similar power
to detect a major gene and estimates of parameters under different genetic scenarios.
The only distinguishable difference between methods was under the finite locus
model when two major genes had equal effect on a trait. In that case, the mixed
model (or PAP, when used as a mixed model) was more powerful than the finite
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polygenic mixed model (or SALP) in rejecting the polygenic model, but the finite
polygenic mixed model gave estimates with less bias than the mixed model. The
finite locus model did not have a negative effect on the power compared with the
mixed generating model. Instead, the power of the methods was often higher under
the finite locus model than when data were generated under the mixed model.
Segregation of two major genes in a population caused biased estimates. Linkage
had a negative effect on the power, but parameter estimates remained unbiased if
the parents were a random sample from a large population in linkage equilibrium
and if the major gene had a substantially larger effect on the trait than the other
genes.
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